Spaces:
Paused
Paused
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline | |
from diffusers import EulerAncestralDiscreteScheduler | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector | |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation | |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering | |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation | |
import os | |
import random | |
import torch | |
import cv2 | |
import uuid | |
from PIL import Image | |
import numpy as np | |
from pytorch_lightning import seed_everything | |
base_diffuser = "johnslegers/epic-diffusion-v1.1" | |
def prompts(name, description): | |
def decorator(func): | |
func.name = name | |
func.description = description | |
return func | |
return decorator | |
def get_new_image_name(org_img_name, func_name="update"): | |
head_tail = os.path.split(org_img_name) | |
head = head_tail[0] | |
tail = head_tail[1] | |
name_split = tail.split('.')[0].split('_') | |
this_new_uuid = str(uuid.uuid4())[0:4] | |
if len(name_split) == 1: | |
most_org_file_name = name_split[0] | |
recent_prev_file_name = name_split[0] | |
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) | |
else: | |
assert len(name_split) == 4 | |
most_org_file_name = name_split[3] | |
recent_prev_file_name = name_split[0] | |
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) | |
return os.path.join(head, new_file_name) | |
class MaskFormer: | |
def __init__(self, device): | |
print(f"Initializing MaskFormer to {device}") | |
self.device = device | |
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) | |
def inference(self, image_path, text): | |
threshold = 0.5 | |
min_area = 0.02 | |
padding = 20 | |
original_image = Image.open(image_path) | |
image = original_image.resize((512, 512)) | |
inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt").to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold | |
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1]) | |
if area_ratio < min_area: | |
return None | |
true_indices = np.argwhere(mask) | |
mask_array = np.zeros_like(mask, dtype=bool) | |
for idx in true_indices: | |
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx) | |
mask_array[padded_slice] = True | |
visual_mask = (mask_array * 255).astype(np.uint8) | |
image_mask = Image.fromarray(visual_mask) | |
return image_mask.resize(original_image.size) | |
class ImageEditing: | |
def __init__(self, device): | |
print(f"Initializing ImageEditing to {device}") | |
self.device = device | |
self.mask_former = MaskFormer(device=self.device) | |
self.revision = 'fp16' if 'cuda' in device else None | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device) | |
def inference_remove(self, inputs): | |
image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
return self.inference_replace(f"{image_path},{to_be_removed_txt},background") | |
def inference_replace(self, inputs): | |
image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",") | |
original_image = Image.open(image_path) | |
original_size = original_image.size | |
mask_image = self.mask_former.inference(image_path, to_be_replaced_txt) | |
updated_image = self.inpaint(prompt=replace_with_txt, image=original_image.resize((512, 512)), | |
mask_image=mask_image.resize((512, 512))).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="replace-something") | |
updated_image = updated_image.resize(original_size) | |
updated_image.save(updated_image_path) | |
print( | |
f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class InstructPix2Pix: | |
def __init__(self, device): | |
print(f"Initializing InstructPix2Pix to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", | |
safety_checker=None, | |
torch_dtype=self.torch_dtype).to(device) | |
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) | |
def inference(self, inputs): | |
"""Change style of image.""" | |
print("===>Starting InstructPix2Pix Inference") | |
image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
original_image = Image.open(image_path) | |
image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="pix2pix") | |
image.save(updated_image_path) | |
print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Text2Image: | |
def __init__(self, device): | |
print(f"Initializing Text2Image to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.pipe = StableDiffusionPipeline.from_pretrained(base_diffuser, | |
torch_dtype=self.torch_dtype) | |
self.pipe.to(device) | |
self.a_prompt = 'digital art, highly detailed, intricate, sharp focus, Trending on Artstation, deviantart, unreal engine 5, 4K UHD image' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, text): | |
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png") | |
prompt = text + ', ' + self.a_prompt | |
image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0] | |
image.save(image_filename) | |
print( | |
f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}") | |
return image_filename | |
class ImageCaptioning: | |
def __init__(self, device): | |
print(f"Initializing ImageCaptioning to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
self.model = BlipForConditionalGeneration.from_pretrained( | |
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device) | |
def inference(self, image_path): | |
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype) | |
out = self.model.generate(**inputs) | |
captions = self.processor.decode(out[0], skip_special_tokens=True) | |
print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}") | |
return captions | |
class Image2Canny: | |
def __init__(self, device): | |
print("Initializing Image2Canny") | |
self.low_threshold = 100 | |
self.high_threshold = 200 | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
image = np.array(image) | |
canny = cv2.Canny(image, self.low_threshold, self.high_threshold) | |
canny = canny[:, :, None] | |
canny = np.concatenate([canny, canny, canny], axis=2) | |
canny = Image.fromarray(canny) | |
updated_image_path = get_new_image_name(inputs, func_name="edge") | |
canny.save(updated_image_path) | |
print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}") | |
return updated_image_path | |
class CannyText2Image: | |
def __init__(self, device): | |
print(f"Initializing CannyText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
base_diffuser, controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="canny2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, " | |
f"Output Text: {updated_image_path}") | |
return updated_image_path | |
class Image2Line: | |
def __init__(self, device): | |
print("Initializing Image2Line") | |
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
mlsd = self.detector(image) | |
updated_image_path = get_new_image_name(inputs, func_name="line-of") | |
mlsd.save(updated_image_path) | |
print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}") | |
return updated_image_path | |
class LineText2Image: | |
def __init__(self, device): | |
print(f"Initializing LineText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
base_diffuser, controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="line2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, " | |
f"Output Text: {updated_image_path}") | |
return updated_image_path | |
class Image2Hed: | |
def __init__(self, device): | |
print("Initializing Image2Hed") | |
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
hed = self.detector(image) | |
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary") | |
hed.save(updated_image_path) | |
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}") | |
return updated_image_path | |
class HedText2Image: | |
def __init__(self, device): | |
print(f"Initializing HedText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
base_diffuser, controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="hed2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Scribble: | |
def __init__(self, device): | |
print("Initializing Image2Scribble") | |
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
scribble = self.detector(image, scribble=True) | |
updated_image_path = get_new_image_name(inputs, func_name="scribble") | |
scribble.save(updated_image_path) | |
print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}") | |
return updated_image_path | |
class ScribbleText2Image: | |
def __init__(self, device): | |
print(f"Initializing ScribbleText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
base_diffuser, controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="scribble2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Pose: | |
def __init__(self, device): | |
print("Initializing Image2Pose") | |
self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
pose = self.detector(image) | |
updated_image_path = get_new_image_name(inputs, func_name="human-pose") | |
pose.save(updated_image_path) | |
print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}") | |
return updated_image_path | |
class PoseText2Image: | |
def __init__(self, device): | |
print(f"Initializing PoseText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
base_diffuser, controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.num_inference_steps = 20 | |
self.seed = -1 | |
self.unconditional_guidance_scale = 9.0 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="pose2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Seg: | |
def __init__(self, device): | |
print("Initializing Image2Seg") | |
self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small") | |
self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small") | |
self.ade_palette = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], | |
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], | |
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], | |
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], | |
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], | |
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], | |
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], | |
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], | |
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], | |
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], | |
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], | |
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], | |
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], | |
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], | |
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], | |
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], | |
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], | |
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], | |
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], | |
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], | |
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], | |
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], | |
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], | |
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], | |
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], | |
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], | |
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], | |
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], | |
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], | |
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], | |
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], | |
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], | |
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], | |
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], | |
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], | |
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], | |
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], | |
[102, 255, 0], [92, 0, 255]] | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
pixel_values = self.image_processor(image, return_tensors="pt").pixel_values | |
with torch.no_grad(): | |
outputs = self.image_segmentor(pixel_values) | |
seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] | |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3 | |
palette = np.array(self.ade_palette) | |
for label, color in enumerate(palette): | |
color_seg[seg == label, :] = color | |
color_seg = color_seg.astype(np.uint8) | |
segmentation = Image.fromarray(color_seg) | |
updated_image_path = get_new_image_name(inputs, func_name="segmentation") | |
segmentation.save(updated_image_path) | |
print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}") | |
return updated_image_path | |
class SegText2Image: | |
def __init__(self, device): | |
print(f"Initializing SegText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
base_diffuser, controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="segment2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Depth: | |
def __init__(self, device): | |
print("Initializing Image2Depth") | |
self.depth_estimator = pipeline('depth-estimation') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
depth = self.depth_estimator(image)['depth'] | |
depth = np.array(depth) | |
depth = depth[:, :, None] | |
depth = np.concatenate([depth, depth, depth], axis=2) | |
depth = Image.fromarray(depth) | |
updated_image_path = get_new_image_name(inputs, func_name="depth") | |
depth.save(updated_image_path) | |
print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}") | |
return updated_image_path | |
class DepthText2Image: | |
def __init__(self, device): | |
print(f"Initializing DepthText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
base_diffuser, controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="depth2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Normal: | |
def __init__(self, device): | |
print("Initializing Image2Normal") | |
self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas") | |
self.bg_threhold = 0.4 | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
original_size = image.size | |
image = self.depth_estimator(image)['predicted_depth'][0] | |
image = image.numpy() | |
image_depth = image.copy() | |
image_depth -= np.min(image_depth) | |
image_depth /= np.max(image_depth) | |
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3) | |
x[image_depth < self.bg_threhold] = 0 | |
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3) | |
y[image_depth < self.bg_threhold] = 0 | |
z = np.ones_like(x) * np.pi * 2.0 | |
image = np.stack([x, y, z], axis=2) | |
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5 | |
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8) | |
image = Image.fromarray(image) | |
image = image.resize(original_size) | |
updated_image_path = get_new_image_name(inputs, func_name="normal-map") | |
image.save(updated_image_path) | |
print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}") | |
return updated_image_path | |
class NormalText2Image: | |
def __init__(self, device): | |
print(f"Initializing NormalText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
base_diffuser, controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="normal2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class VisualQuestionAnswering: | |
def __init__(self, device): | |
print(f"Initializing VisualQuestionAnswering to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.device = device | |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
self.model = BlipForQuestionAnswering.from_pretrained( | |
"Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device) | |
def inference(self, inputs): | |
image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
raw_image = Image.open(image_path).convert('RGB') | |
inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype) | |
out = self.model.generate(**inputs) | |
answer = self.processor.decode(out[0], skip_special_tokens=True) | |
print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, " | |
f"Output Answer: {answer}") | |
return answer |