Spaces:
Runtime error
Runtime error
Support SDXL-Lightning and fix some errors for baseline.
Browse files1. We support ResAdapter with SDXL-Lightning-Step4.
2. We fix some errors leading to wrong generation.
app.py
CHANGED
@@ -2,25 +2,35 @@
|
|
2 |
|
3 |
|
4 |
import os
|
|
|
5 |
os.system("pip install -U peft")
|
6 |
import random
|
7 |
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
import PIL.Image
|
|
|
11 |
import spaces
|
12 |
import torch
|
13 |
-
from diffusers import
|
|
|
|
|
|
|
|
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
-
from
|
16 |
|
17 |
DESCRIPTION = """
|
18 |
# Res-Adapter :Domain Consistent Resolution Adapter for Diffusion Models
|
19 |
**Demo by [ameer azam] - [Twitter](https://twitter.com/Ameerazam18) - [GitHub](https://github.com/AMEERAZAM08)) - [Hugging Face](https://huggingface.co/ameerazam08)**
|
20 |
-
This is a demo of https://huggingface.co/jiaxiangc/res-adapter
|
|
|
|
|
21 |
"""
|
22 |
if not torch.cuda.is_available():
|
23 |
-
DESCRIPTION +=
|
|
|
|
|
24 |
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|
26 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
|
@@ -29,21 +39,26 @@ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
|
29 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
30 |
|
31 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
32 |
-
pipe = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0',use_safetensors=True)# torch_dtype=torch.float16, variant="safetensors")
|
33 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
|
34 |
|
|
|
|
|
|
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
pipe.load_lora_weights(
|
38 |
hf_hub_download(
|
39 |
-
repo_id="jiaxiangc/res-adapter",
|
40 |
-
subfolder="sdxl-i",
|
41 |
filename="resolution_lora.safetensors",
|
42 |
),
|
43 |
adapter_name="res_adapter",
|
44 |
)
|
45 |
-
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0])
|
46 |
-
pipe = pipe.to(device)
|
47 |
|
48 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
49 |
if randomize_seed:
|
@@ -63,11 +78,11 @@ def generate(
|
|
63 |
seed: int = 0,
|
64 |
width: int = 1024,
|
65 |
height: int = 1024,
|
66 |
-
|
67 |
-
|
68 |
progress=gr.Progress(track_tqdm=True),
|
69 |
) -> PIL.Image.Image:
|
70 |
-
print(f
|
71 |
generator = torch.Generator().manual_seed(seed)
|
72 |
|
73 |
if not use_negative_prompt:
|
@@ -76,46 +91,51 @@ def generate(
|
|
76 |
prompt_2 = None # type: ignore
|
77 |
if not use_negative_prompt_2:
|
78 |
negative_prompt_2 = None # type: ignore
|
79 |
-
|
|
|
|
|
80 |
prompt=prompt,
|
81 |
negative_prompt=negative_prompt,
|
82 |
prompt_2=prompt_2,
|
83 |
negative_prompt_2=negative_prompt_2,
|
84 |
width=width,
|
85 |
height=height,
|
86 |
-
|
87 |
-
|
88 |
-
generator=generator,
|
89 |
output_type="pil",
|
|
|
90 |
).images[0]
|
91 |
|
92 |
-
|
93 |
-
|
|
|
94 |
prompt=prompt,
|
95 |
negative_prompt=negative_prompt,
|
96 |
prompt_2=prompt_2,
|
97 |
negative_prompt_2=negative_prompt_2,
|
98 |
width=width,
|
99 |
height=height,
|
100 |
-
|
101 |
-
|
|
|
102 |
generator=generator,
|
103 |
-
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
return [res_adapt,base_image]
|
109 |
|
110 |
|
111 |
examples = [
|
112 |
-
"A
|
113 |
-
"
|
114 |
-
"cinematic film still, photo of a girl, cyberpunk, neonpunk, headset, city at night, sony fe 12-24mm f/2.8 gm, close up, 32k uhd, wallpaper, analog film grain, SONY headset"
|
115 |
]
|
116 |
|
117 |
theme = gr.themes.Base(
|
118 |
-
font=[
|
|
|
|
|
|
|
|
|
|
|
119 |
)
|
120 |
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
|
121 |
gr.Markdown(DESCRIPTION)
|
@@ -136,13 +156,15 @@ with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
|
|
136 |
# result = gr.Gallery(label="Right is Res-Adapt-LORA and Left is Base"),
|
137 |
with gr.Accordion("Advanced options", open=False):
|
138 |
with gr.Row():
|
139 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=
|
140 |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
141 |
-
use_negative_prompt_2 = gr.Checkbox(
|
|
|
|
|
142 |
negative_prompt = gr.Text(
|
143 |
label="Negative prompt",
|
144 |
max_lines=1,
|
145 |
-
placeholder="
|
146 |
visible=True,
|
147 |
)
|
148 |
prompt_2 = gr.Text(
|
@@ -182,19 +204,19 @@ with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
|
|
182 |
value=512,
|
183 |
)
|
184 |
with gr.Row():
|
185 |
-
|
186 |
-
label="Guidance scale
|
187 |
-
minimum=
|
188 |
maximum=20,
|
189 |
step=0.1,
|
190 |
-
value=
|
191 |
)
|
192 |
-
|
193 |
-
label="Number of inference steps
|
194 |
-
minimum=
|
195 |
-
maximum=
|
196 |
step=1,
|
197 |
-
value=
|
198 |
)
|
199 |
gr.Examples(
|
200 |
examples=examples,
|
@@ -251,12 +273,12 @@ with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
|
|
251 |
seed,
|
252 |
width,
|
253 |
height,
|
254 |
-
|
255 |
-
|
256 |
],
|
257 |
-
outputs=gr.Gallery(label="Left is
|
258 |
api_name="run",
|
259 |
)
|
260 |
|
261 |
if __name__ == "__main__":
|
262 |
-
demo.queue(max_size=20, api_open=False).launch(show_api=False)
|
|
|
2 |
|
3 |
|
4 |
import os
|
5 |
+
|
6 |
os.system("pip install -U peft")
|
7 |
import random
|
8 |
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
11 |
import PIL.Image
|
12 |
+
|
13 |
import spaces
|
14 |
import torch
|
15 |
+
from diffusers import (
|
16 |
+
StableDiffusionXLPipeline,
|
17 |
+
UNet2DConditionModel,
|
18 |
+
EulerDiscreteScheduler,
|
19 |
+
)
|
20 |
from huggingface_hub import hf_hub_download
|
21 |
+
from safetensors.torch import load_file
|
22 |
|
23 |
DESCRIPTION = """
|
24 |
# Res-Adapter :Domain Consistent Resolution Adapter for Diffusion Models
|
25 |
**Demo by [ameer azam] - [Twitter](https://twitter.com/Ameerazam18) - [GitHub](https://github.com/AMEERAZAM08)) - [Hugging Face](https://huggingface.co/ameerazam08)**
|
26 |
+
This is a demo of https://huggingface.co/jiaxiangc/res-adapter ResAdapter by ByteDance.
|
27 |
+
|
28 |
+
ByteDance provide a demo of [ResAdapter](https://huggingface.co/jiaxiangc/res-adapter) with [SDXL-Lightning-Step4](https://huggingface.co/ByteDance/SDXL-Lightning) to expand resolution range from 1024-only to 256~1024.
|
29 |
"""
|
30 |
if not torch.cuda.is_available():
|
31 |
+
DESCRIPTION += (
|
32 |
+
"\n<h1>Running on CPU π₯Ά This demo does not work on CPU.</a> instead</h1>"
|
33 |
+
)
|
34 |
|
35 |
MAX_SEED = np.iinfo(np.int32).max
|
36 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
|
|
|
39 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
40 |
|
41 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
42 |
|
43 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
44 |
+
repo = "ByteDance/SDXL-Lightning"
|
45 |
+
ckpt = "sdxl_lightning_4step_unet.safetensors" # Use the correct ckpt for your step setting!
|
46 |
|
47 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
48 |
+
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
49 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16")
|
50 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
51 |
+
pipe = pipe.to(device)
|
52 |
|
53 |
+
# Load resadapter
|
54 |
pipe.load_lora_weights(
|
55 |
hf_hub_download(
|
56 |
+
repo_id="jiaxiangc/res-adapter",
|
57 |
+
subfolder="sdxl-i",
|
58 |
filename="resolution_lora.safetensors",
|
59 |
),
|
60 |
adapter_name="res_adapter",
|
61 |
)
|
|
|
|
|
62 |
|
63 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
64 |
if randomize_seed:
|
|
|
78 |
seed: int = 0,
|
79 |
width: int = 1024,
|
80 |
height: int = 1024,
|
81 |
+
guidance_scale: float = 0,
|
82 |
+
num_inference_steps: int = 4,
|
83 |
progress=gr.Progress(track_tqdm=True),
|
84 |
) -> PIL.Image.Image:
|
85 |
+
print(f'** Generating image for: "{prompt}" **')
|
86 |
generator = torch.Generator().manual_seed(seed)
|
87 |
|
88 |
if not use_negative_prompt:
|
|
|
91 |
prompt_2 = None # type: ignore
|
92 |
if not use_negative_prompt_2:
|
93 |
negative_prompt_2 = None # type: ignore
|
94 |
+
|
95 |
+
pipe.set_adapters(["res_adapter"], adapter_weights=[0.0])
|
96 |
+
base_image = pipe(
|
97 |
prompt=prompt,
|
98 |
negative_prompt=negative_prompt,
|
99 |
prompt_2=prompt_2,
|
100 |
negative_prompt_2=negative_prompt_2,
|
101 |
width=width,
|
102 |
height=height,
|
103 |
+
num_inference_steps=num_inference_steps,
|
104 |
+
guidance_scale=guidance_scale,
|
|
|
105 |
output_type="pil",
|
106 |
+
generator=generator,
|
107 |
).images[0]
|
108 |
|
109 |
+
|
110 |
+
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0])
|
111 |
+
res_adapt = pipe(
|
112 |
prompt=prompt,
|
113 |
negative_prompt=negative_prompt,
|
114 |
prompt_2=prompt_2,
|
115 |
negative_prompt_2=negative_prompt_2,
|
116 |
width=width,
|
117 |
height=height,
|
118 |
+
num_inference_steps=num_inference_steps,
|
119 |
+
guidance_scale=guidance_scale,
|
120 |
+
output_type="pil",
|
121 |
generator=generator,
|
122 |
+
).images[0]
|
123 |
|
124 |
+
return [res_adapt, base_image]
|
|
|
|
|
|
|
125 |
|
126 |
|
127 |
examples = [
|
128 |
+
"A girl smiling",
|
129 |
+
"A boy smiling",
|
|
|
130 |
]
|
131 |
|
132 |
theme = gr.themes.Base(
|
133 |
+
font=[
|
134 |
+
gr.themes.GoogleFont("Libre Franklin"),
|
135 |
+
gr.themes.GoogleFont("Public Sans"),
|
136 |
+
"system-ui",
|
137 |
+
"sans-serif",
|
138 |
+
],
|
139 |
)
|
140 |
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
|
141 |
gr.Markdown(DESCRIPTION)
|
|
|
156 |
# result = gr.Gallery(label="Right is Res-Adapt-LORA and Left is Base"),
|
157 |
with gr.Accordion("Advanced options", open=False):
|
158 |
with gr.Row():
|
159 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
160 |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
161 |
+
use_negative_prompt_2 = gr.Checkbox(
|
162 |
+
label="Use negative prompt 2", value=False
|
163 |
+
)
|
164 |
negative_prompt = gr.Text(
|
165 |
label="Negative prompt",
|
166 |
max_lines=1,
|
167 |
+
placeholder="Enter your prompt",
|
168 |
visible=True,
|
169 |
)
|
170 |
prompt_2 = gr.Text(
|
|
|
204 |
value=512,
|
205 |
)
|
206 |
with gr.Row():
|
207 |
+
guidance_scale = gr.Slider(
|
208 |
+
label="Guidance scale",
|
209 |
+
minimum=0,
|
210 |
maximum=20,
|
211 |
step=0.1,
|
212 |
+
value=0,
|
213 |
)
|
214 |
+
num_inference_steps = gr.Slider(
|
215 |
+
label="Number of inference steps",
|
216 |
+
minimum=1,
|
217 |
+
maximum=50,
|
218 |
step=1,
|
219 |
+
value=4,
|
220 |
)
|
221 |
gr.Examples(
|
222 |
examples=examples,
|
|
|
273 |
seed,
|
274 |
width,
|
275 |
height,
|
276 |
+
guidance_scale,
|
277 |
+
num_inference_steps,
|
278 |
],
|
279 |
+
outputs=gr.Gallery(label="Left is ResAdapter and Right is Base"),
|
280 |
api_name="run",
|
281 |
)
|
282 |
|
283 |
if __name__ == "__main__":
|
284 |
+
demo.queue(max_size=20, api_open=False).launch(show_api=False)
|