ameerazam08 commited on
Commit
bbaefb7
1 Parent(s): 2142ea2
Files changed (1) hide show
  1. app.py +2 -86
app.py CHANGED
@@ -1,87 +1,3 @@
1
- # import torch
2
- # import torchaudio
3
- # from einops import rearrange
4
- # import gradio as gr
5
- # import spaces
6
- # import os
7
- # import uuid
8
-
9
- # # Importing the model-related functions
10
- # from stable_audio_tools import get_pretrained_model
11
- # from stable_audio_tools.inference.generation import generate_diffusion_cond
12
-
13
-
14
- # from huggingface_hub import login
15
-
16
- # hf_token = os.getenv('HF_TOKEN')
17
- # login(token=hf_token,add_to_git_credential=True)
18
-
19
- # # Load the model outside of the GPU-decorated function
20
- # def load_model():
21
- # print("Loading model...")
22
- # model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
23
- # print("Model loaded successfully.")
24
- # return model, model_config
25
-
26
- # # Define the function to generate audio
27
- # @spaces.GPU(duration=120)
28
- # def generate_audio(prompt, bpm, seconds_total):
29
- # device = "cuda" if torch.cuda.is_available() else "cpu"
30
-
31
- # # Download model
32
- # model, model_config = load_model()
33
- # sample_rate = model_config["sample_rate"]
34
- # sample_size = model_config["sample_size"]
35
-
36
- # model = model.to(device)
37
-
38
- # # Set up text and timing conditioning
39
- # conditioning = [{
40
- # "prompt": f"{bpm} BPM {prompt}",
41
- # "seconds_start": 0,
42
- # "seconds_total": seconds_total
43
- # }]
44
-
45
- # # Generate stereo audio
46
- # output = generate_diffusion_cond(
47
- # model,
48
- # steps=100,
49
- # cfg_scale=7,
50
- # conditioning=conditioning,
51
- # sample_size=sample_size,
52
- # sigma_min=0.3,
53
- # sigma_max=500,
54
- # sampler_type="dpmpp-3m-sde",
55
- # device=device
56
- # )
57
-
58
- # # Rearrange audio batch to a single sequence
59
- # output = rearrange(output, "b d n -> d (b n)")
60
-
61
- # # Peak normalize, clip, convert to int16, and save to file
62
- # output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
63
-
64
- # output_path = "output.wav"
65
- # torchaudio.save(output_path, output, sample_rate)
66
-
67
- # return output_path
68
-
69
- # # Define the Gradio interface
70
- # iface = gr.Interface(
71
- # fn=generate_audio,
72
- # inputs=[
73
- # gr.Textbox(label="Prompt", placeholder="Enter the description of the audio (e.g., tech house drum loop)"),
74
- # gr.Number(label="BPM", value=128),
75
- # gr.Number(label="Duration (seconds)", value=30)
76
- # ],
77
- # outputs=gr.Audio(label="Generated Audio"),
78
- # title="Stable Audio Generation",
79
- # description="Generate audio based on a text prompt using stable audio tools.",
80
- # )
81
-
82
- # # Launch the interface
83
- # iface.launch()
84
-
85
  import torch
86
  import torchaudio
87
  from einops import rearrange
@@ -96,9 +12,9 @@ from stable_audio_tools.inference.generation import generate_diffusion_cond
96
 
97
  # Load the model outside of the GPU-decorated function
98
  def load_model():
99
- print("Loading model...")
100
  model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
101
- print("Model loaded successfully.")
102
  return model, model_config
103
 
104
  # Function to set up, generate, and process the audio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
  import torchaudio
3
  from einops import rearrange
 
12
 
13
  # Load the model outside of the GPU-decorated function
14
  def load_model():
15
+
16
  model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
17
+ print("Loading model...Done")
18
  return model, model_config
19
 
20
  # Function to set up, generate, and process the audio