File size: 11,668 Bytes
2e1a3f8 e8c51f1 2e1a3f8 e8c51f1 2e1a3f8 ab7830f 2e1a3f8 ab7830f 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 ab7830f 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 2e1a3f8 9c33733 2e1a3f8 9c33733 9e7d7f8 0ce76e1 2e1a3f8 5b3ff3f 2e1a3f8 9e7d7f8 ab7830f 2e1a3f8 9e7d7f8 2e1a3f8 9e7d7f8 ab7830f 4b1b415 ab7830f 4b1b415 38e692a 4b1b415 38e692a ab7830f 9e7d7f8 38e692a 2e1a3f8 9e7d7f8 2e1a3f8 38e692a 9e7d7f8 fb52eb2 4b1b415 ab7830f 38e692a ab7830f 9e7d7f8 2f8bace ab7830f a9179d9 2f8bace ab7830f acf06cd 98deba6 647ac05 98deba6 647ac05 ce5a659 647ac05 ce5a659 d0460c0 98deba6 a9179d9 2e7b28f 2f8bace a9179d9 2e7b28f 2f8bace d0460c0 2f8bace d0460c0 2f8bace a9179d9 d0460c0 2f8bace d0460c0 2f8bace 701f333 a9179d9 733749d a9179d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import sys
import gradio
sys.path.append("BERT_explainability")
import torch
from transformers import AutoModelForSequenceClassification
from BERT_explainability.ExplanationGenerator import Generator
from BERT_explainability.roberta2 import RobertaForSequenceClassification
from transformers import AutoTokenizer
from captum.attr import LayerIntegratedGradients
from captum.attr import visualization
import torch
# from https://discuss.pytorch.org/t/using-scikit-learns-scalers-for-torchvision/53455
class PyTMinMaxScalerVectorized(object):
"""
Transforms each channel to the range [0, 1].
"""
def __init__(self, dimension=-1):
self.d = dimension
def __call__(self, tensor):
d = self.d
scale = 1.0 / (
tensor.max(dim=d, keepdim=True)[0] - tensor.min(dim=d, keepdim=True)[0]
)
tensor.mul_(scale).sub_(tensor.min(dim=d, keepdim=True)[0])
return tensor
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model = RobertaForSequenceClassification.from_pretrained(
"textattack/roberta-base-SST-2"
).to(device)
model.eval()
model2 = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-SST-2")
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
# initialize the explanations generator
explanations = Generator(model, "roberta")
classifications = ["NEGATIVE", "POSITIVE"]
# rule 5 from paper
def avg_heads(cam, grad):
cam = (grad * cam).clamp(min=0).mean(dim=-3)
# set negative values to 0, then average
# cam = cam.clamp(min=0).mean(dim=0)
return cam
# rule 6 from paper
def apply_self_attention_rules(R_ss, cam_ss):
R_ss_addition = torch.matmul(cam_ss, R_ss)
return R_ss_addition
def generate_relevance(model, input_ids, attention_mask, index=None, start_layer=0):
output = model(input_ids=input_ids, attention_mask=attention_mask)[0]
if index == None:
# index = np.expand_dims(np.arange(input_ids.shape[1])
# by default explain the class with the highest score
index = output.argmax(axis=-1).detach().cpu().numpy()
# create a one-hot vector selecting class we want explanations for
one_hot = (
torch.nn.functional.one_hot(
torch.tensor(index, dtype=torch.int64), num_classes=output.size(-1)
)
.to(torch.float)
.requires_grad_(True)
).to(device)
one_hot = torch.sum(one_hot * output)
model.zero_grad()
# create the gradients for the class we're interested in
one_hot.backward(retain_graph=True)
num_tokens = model.roberta.encoder.layer[0].attention.self.get_attn().shape[-1]
R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(device)
for i, blk in enumerate(model.roberta.encoder.layer):
if i < start_layer:
continue
grad = blk.attention.self.get_attn_gradients()
cam = blk.attention.self.get_attn()
cam = avg_heads(cam, grad)
joint = apply_self_attention_rules(R, cam)
R += joint
return output, R[:, 0, 1:-1]
def visualize_text(datarecords, legend=True):
dom = ["<table width: 100%>"]
rows = [
"<tr><th>True Label</th>"
"<th>Predicted Label</th>"
"<th>Attribution Label</th>"
"<th>Attribution Score</th>"
"<th>Word Importance</th>"
]
for datarecord in datarecords:
rows.append(
"".join(
[
"<tr>",
visualization.format_classname(datarecord.true_class),
visualization.format_classname(
"{0} ({1:.2f})".format(
datarecord.pred_class, datarecord.pred_prob
)
),
visualization.format_classname(datarecord.attr_class),
visualization.format_classname(
"{0:.2f}".format(datarecord.attr_score)
),
visualization.format_word_importances(
datarecord.raw_input_ids, datarecord.word_attributions
),
"<tr>",
]
)
)
if legend:
dom.append(
'<div style="border-top: 1px solid; margin-top: 5px; \
padding-top: 5px; display: inline-block">'
)
dom.append("<b>Legend: </b>")
for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]):
dom.append(
'<span style="display: inline-block; width: 10px; height: 10px; \
border: 1px solid; background-color: \
{value}"></span> {label} '.format(
value=visualization._get_color(value), label=label
)
)
dom.append("</div>")
dom.append("".join(rows))
dom.append("</table>")
html = "".join(dom)
return html
def show_explanation(model, input_ids, attention_mask, index=None, start_layer=8):
# generate an explanation for the input
output, expl = generate_relevance(
model, input_ids, attention_mask, index=index, start_layer=start_layer
)
# normalize scores
scaler = PyTMinMaxScalerVectorized()
norm = scaler(expl)
# get the model classification
output = torch.nn.functional.softmax(output, dim=-1)
vis_data_records = []
for record in range(input_ids.size(0)):
classification = output[record].argmax(dim=-1).item()
class_name = classifications[classification]
nrm = norm[record]
# if the classification is negative, higher explanation scores are more negative
# flip for visualization
if class_name == "NEGATIVE":
nrm *= -1
tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[
1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
]
# vis_data_records.append(list(zip(tokens, nrm.tolist())))
vis_data_records.append(
visualization.VisualizationDataRecord(
nrm,
output[record][classification],
classification,
classification,
index,
1,
tokens,
1,
)
)
return visualize_text(vis_data_records)
def custom_forward(inputs, attention_mask=None, pos=0):
result = model2(inputs, attention_mask=attention_mask, return_dict=True)
preds = result.logits
return preds
def summarize_attributions(attributions):
attributions = attributions.sum(dim=-1).squeeze(0)
attributions = attributions / torch.norm(attributions)
return attributions
def run_attribution_model(input_ids, attention_mask, ref_token_id=tokenizer.unk_token_id, layer=None, steps=20):
try:
output = model2(input_ids=input_ids, attention_mask=attention_mask)[0]
index = output.argmax(axis=-1).detach().cpu().numpy()
ablator = LayerIntegratedGradients(custom_forward, layer)
input_tensor = input_ids
attention_mask = attention_mask
attributions = ablator.attribute(
inputs=input_ids,
baselines=ref_token_id,
additional_forward_args=(attention_mask),
target=1,
n_steps=steps,
)
attributions = summarize_attributions(attributions).unsqueeze_(0)
finally:
pass
vis_data_records = []
for record in range(input_ids.size(0)):
classification = output[record].argmax(dim=-1).item()
class_name = classifications[classification]
attr = attributions[record]
tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[
1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
]
vis_data_records.append(
visualization.VisualizationDataRecord(
attr,
output[record][classification],
classification,
classification,
index,
1,
tokens,
1,
)
)
return visualize_text(vis_data_records)
def sentence_sentiment(input_text, layer):
text_batch = [input_text]
encoding = tokenizer(text_batch, return_tensors="pt")
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
layer = int(layer)
if layer == 0:
layer = model2.roberta.embeddings
else:
layer = getattr(model2.roberta.encoder.layer, str(layer-1))
output = run_attribution_model(input_ids, attention_mask, layer=layer)
return output
def sentiment_explanation_hila(input_text, layer):
text_batch = [input_text]
encoding = tokenizer(text_batch, return_tensors="pt")
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
# true class is positive - 1
true_class = 1
return show_explanation(model, input_ids, attention_mask, start_layer=int(layer))
layer_slider = gradio.Slider(minimum=0, maximum=12, value=8, step=1, label="Select rollout layer")
hila = gradio.Interface(
fn=sentiment_explanation_hila,
inputs=["text", layer_slider],
outputs="html",
)
# layer_slider2 = gradio.Slider(minimum=0, maximum=12, value=0, step=1, label="Select IG layer")
lig = gradio.Interface(
fn=sentence_sentiment,
inputs=["text", layer_slider],
outputs="html",
)
iface = gradio.Parallel(hila, lig,
title="RoBERTa Explainability",
description="""
In this demo, we use the RoBERTa language model (optimized for masked language modelling and finetuned for sentiment analysis).
The model predicts for a given sentences whether it expresses a positive, negative or neutral sentiment.
But how does it arrive at its classification? A range of so-called "attribution methods" have been developed that attempt to determine the importance of the words in the input for the final prediction.
(Note that in general, importance scores only provide a very limited form of "explanation" and that different attribution methods differ radically in how they assign importance).
Two key methods for Transformers are "attention rollout" (Abnar & Zuidema, 2020) and (layer) Integrated Gradient. Here we show:
* Gradient-weighted attention rollout, as defined by [Hila Chefer](https://github.com/hila-chefer)
[(Transformer-MM_explainability)](https://github.com/hila-chefer/Transformer-MM-Explainability/), without rollout recursion upto selected layer
* Layer IG, as implemented in [Captum](https://captum.ai/)(LayerIntegratedGradients), based on gradient w.r.t. selected layer.
""",
examples=[
[
"This movie was the best movie I have ever seen! some scenes were ridiculous, but acting was great",
8
],
[
"I really didn't like this movie. Some of the actors were good, but overall the movie was boring",
8
],
[
"If the acting had been better, this movie might have been pretty good.",
8
],
[
"If he had hated it, he would not have said that he loved it.",
8
],
[
"If he had hated it, he would not have said that he loved it.",
8
],
[
"Attribution methods are very interesting, but unfortunately do not work reliably out of the box.",
8
]
],
)
iface.launch()
|