import sys import gradio sys.path.append("BERT_explainability") import torch from BERT_explainability.ExplanationGenerator import Generator from BERT_explainability.roberta2 import RobertaForSequenceClassification from transformers import AutoTokenizer from captum.attr import ( visualization ) import torch # from https://discuss.pytorch.org/t/using-scikit-learns-scalers-for-torchvision/53455 class PyTMinMaxScalerVectorized(object): """ Transforms each channel to the range [0, 1]. """ def __init__(self, dimension=-1): self.d = dimension def __call__(self, tensor): d = self.d scale = 1.0 / (tensor.max(dim=d, keepdim=True)[0] - tensor.min(dim=d, keepdim=True)[0]) tensor.mul_(scale).sub_(tensor.min(dim=d, keepdim=True)[0]) return tensor if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") model = RobertaForSequenceClassification.from_pretrained("textattack/roberta-base-SST-2").to(device) model.eval() tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2") # initialize the explanations generator explanations = Generator(model, "roberta") classifications = ["NEGATIVE", "POSITIVE"] # rule 5 from paper def avg_heads(cam, grad): cam = ( (grad * cam) .clamp(min=0) .mean(dim=-3) ) # set negative values to 0, then average # cam = cam.clamp(min=0).mean(dim=0) return cam # rule 6 from paper def apply_self_attention_rules(R_ss, cam_ss): R_ss_addition = torch.matmul(cam_ss, R_ss) return R_ss_addition def generate_relevance(model, input_ids, attention_mask, index=None, start_layer=0): output = model(input_ids=input_ids, attention_mask=attention_mask)[0] if index == None: #index = np.expand_dims(np.arange(input_ids.shape[1]) # by default explain the class with the highest score index = output.argmax(axis=-1).detach().cpu().numpy() # create a one-hot vector selecting class we want explanations for one_hot = (torch.nn.functional .one_hot(torch.tensor(index, dtype=torch.int64), num_classes=output.size(-1)) .to(torch.float) .requires_grad_(True) ).to(device) print("ONE_HOT", one_hot.size(), one_hot) one_hot = torch.sum(one_hot * output) model.zero_grad() # create the gradients for the class we're interested in one_hot.backward(retain_graph=True) num_tokens = model.roberta.encoder.layer[0].attention.self.get_attn().shape[-1] print(input_ids.size(-1), num_tokens) R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(device) for i, blk in enumerate(model.roberta.encoder.layer): if i < start_layer: continue grad = blk.attention.self.get_attn_gradients() cam = blk.attention.self.get_attn() cam = avg_heads(cam, grad) joint = apply_self_attention_rules(R, cam) R += joint return output, R[:, 0, 1:-1] def visualize_text(datarecords, legend=True): dom = [""] rows = [ "" "" "" "" "" ] for datarecord in datarecords: rows.append( "".join( [ "", format_classname(datarecord.true_class), format_classname( "{0} ({1:.2f})".format( datarecord.pred_class, datarecord.pred_prob ) ), format_classname(datarecord.attr_class), format_classname("{0:.2f}".format(datarecord.attr_score)), format_word_importances( datarecord.raw_input_ids, datarecord.word_attributions ), "", ] ) ) if legend: dom.append( '
' ) dom.append("Legend: ") for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]): dom.append( ' {label} '.format( value=_get_color(value), label=label ) ) dom.append("
") dom.append("".join(rows)) dom.append("
True LabelPredicted LabelAttribution LabelAttribution ScoreWord Importance
") html = "".join(dom) return html def show_explanation(model, input_ids, attention_mask, index=None, start_layer=0): # generate an explanation for the input output, expl = generate_relevance(model, input_ids, attention_mask, index=index, start_layer=start_layer) print(output.shape, expl.shape) # normalize scores scaler = PyTMinMaxScalerVectorized() norm = scaler(expl) # get the model classification output = torch.nn.functional.softmax(output, dim=-1) vis_data_records = [] for record in range(input_ids.size(0)): classification = output[record].argmax(dim=-1).item() class_name = classifications[classification] nrm = norm[record] # if the classification is negative, higher explanation scores are more negative # flip for visualization if class_name == "NEGATIVE": nrm *= (-1) tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[1:0 - ((attention_mask[record] == 0).sum().item() + 1)] print([(tokens[i], nrm[i].item()) for i in range(len(tokens))]) vis_data_records.append(visualization.VisualizationDataRecord( nrm, output[record][classification], classification, classification, index, 1, tokens, 1)) return visualize_text(vis_data_records) def run(input_text): text_batch = [input_text] encoding = tokenizer(text_batch, return_tensors='pt') input_ids = encoding['input_ids'].to(device) attention_mask = encoding['attention_mask'].to(device) # true class is positive - 1 true_class = 1 html = show_explanation(model, input_ids, attention_mask) return html iface = gradio.Interface(fn=run, inputs="text", outputs="html", examples=[["This movie was the best movie I have ever seen! some scenes were ridiculous, but acting was great"], ["I really didn't like this movie. Some of the actors were good, but overall the movie was boring"]]) iface.launch()