import sys
import gradio
sys.path.append("BERT_explainability")
import torch
from transformers import AutoModelForSequenceClassification
from BERT_explainability.ExplanationGenerator import Generator
from BERT_explainability.roberta2 import RobertaForSequenceClassification
from transformers import AutoTokenizer
from captum.attr import LayerIntegratedGradients
from captum.attr import visualization
import torch
# from https://discuss.pytorch.org/t/using-scikit-learns-scalers-for-torchvision/53455
class PyTMinMaxScalerVectorized(object):
"""
Transforms each channel to the range [0, 1].
"""
def __init__(self, dimension=-1):
self.d = dimension
def __call__(self, tensor):
d = self.d
scale = 1.0 / (
tensor.max(dim=d, keepdim=True)[0] - tensor.min(dim=d, keepdim=True)[0]
)
tensor.mul_(scale).sub_(tensor.min(dim=d, keepdim=True)[0])
return tensor
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model = RobertaForSequenceClassification.from_pretrained(
"textattack/roberta-base-SST-2"
).to(device)
model.eval()
model2 = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-SST-2")
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
# initialize the explanations generator
explanations = Generator(model, "roberta")
classifications = ["NEGATIVE", "POSITIVE"]
# rule 5 from paper
def avg_heads(cam, grad):
cam = (grad * cam).clamp(min=0).mean(dim=-3)
# set negative values to 0, then average
# cam = cam.clamp(min=0).mean(dim=0)
return cam
# rule 6 from paper
def apply_self_attention_rules(R_ss, cam_ss):
R_ss_addition = torch.matmul(cam_ss, R_ss)
return R_ss_addition
def generate_relevance(model, input_ids, attention_mask, index=None, start_layer=0):
output = model(input_ids=input_ids, attention_mask=attention_mask)[0]
if index == None:
# index = np.expand_dims(np.arange(input_ids.shape[1])
# by default explain the class with the highest score
index = output.argmax(axis=-1).detach().cpu().numpy()
# create a one-hot vector selecting class we want explanations for
one_hot = (
torch.nn.functional.one_hot(
torch.tensor(index, dtype=torch.int64), num_classes=output.size(-1)
)
.to(torch.float)
.requires_grad_(True)
).to(device)
one_hot = torch.sum(one_hot * output)
model.zero_grad()
# create the gradients for the class we're interested in
one_hot.backward(retain_graph=True)
num_tokens = model.roberta.encoder.layer[0].attention.self.get_attn().shape[-1]
R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(device)
for i, blk in enumerate(model.roberta.encoder.layer):
if i < start_layer:
continue
grad = blk.attention.self.get_attn_gradients()
cam = blk.attention.self.get_attn()
cam = avg_heads(cam, grad)
joint = apply_self_attention_rules(R, cam)
R += joint
return output, R[:, 0, 1:-1]
def visualize_text(datarecords, legend=True):
dom = ["
"]
rows = [
"True Label | "
"Predicted Label | "
"Attribution Label | "
"Attribution Score | "
"Word Importance | "
]
for datarecord in datarecords:
rows.append(
"".join(
[
"
---|
",
visualization.format_classname(datarecord.true_class),
visualization.format_classname(
"{0} ({1:.2f})".format(
datarecord.pred_class, datarecord.pred_prob
)
),
visualization.format_classname(datarecord.attr_class),
visualization.format_classname(
"{0:.2f}".format(datarecord.attr_score)
),
visualization.format_word_importances(
datarecord.raw_input_ids, datarecord.word_attributions
),
"
",
]
)
)
if legend:
dom.append(
''
)
dom.append("Legend: ")
for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]):
dom.append(
' {label} '.format(
value=visualization._get_color(value), label=label
)
)
dom.append("
")
dom.append("".join(rows))
dom.append("
")
html = "".join(dom)
return html
def show_explanation(model, input_ids, attention_mask, index=None, start_layer=8):
# generate an explanation for the input
output, expl = generate_relevance(
model, input_ids, attention_mask, index=index, start_layer=start_layer
)
# normalize scores
scaler = PyTMinMaxScalerVectorized()
norm = scaler(expl)
# get the model classification
output = torch.nn.functional.softmax(output, dim=-1)
vis_data_records = []
for record in range(input_ids.size(0)):
classification = output[record].argmax(dim=-1).item()
class_name = classifications[classification]
nrm = norm[record]
# if the classification is negative, higher explanation scores are more negative
# flip for visualization
if class_name == "NEGATIVE":
nrm *= -1
tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[
1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
]
# vis_data_records.append(list(zip(tokens, nrm.tolist())))
vis_data_records.append(
visualization.VisualizationDataRecord(
nrm,
output[record][classification],
classification,
classification,
index,
1,
tokens,
1,
)
)
return visualize_text(vis_data_records)
def custom_forward(inputs, attention_mask=None, pos=0):
result = model2(inputs, attention_mask=attention_mask, return_dict=True)
preds = result.logits
return preds
def summarize_attributions(attributions):
attributions = attributions.sum(dim=-1).squeeze(0)
attributions = attributions / torch.norm(attributions)
return attributions
def run_attribution_model(input_ids, attention_mask, ref_token_id=tokenizer.unk_token_id, layer=None, steps=20):
try:
output = model2(input_ids=input_ids, attention_mask=attention_mask)[0]
index = output.argmax(axis=-1).detach().cpu().numpy()
ablator = LayerIntegratedGradients(custom_forward, layer)
input_tensor = input_ids
attention_mask = attention_mask
attributions = ablator.attribute(
inputs=input_ids,
baselines=ref_token_id,
additional_forward_args=(attention_mask),
target=1,
n_steps=steps,
)
attributions = summarize_attributions(attributions).unsqueeze_(0)
finally:
pass
vis_data_records = []
for record in range(input_ids.size(0)):
classification = output[record].argmax(dim=-1).item()
class_name = classifications[classification]
attr = attributions[record]
tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[
1 : 0 - ((attention_mask[record] == 0).sum().item() + 1)
]
vis_data_records.append(
visualization.VisualizationDataRecord(
attr,
output[record][classification],
classification,
classification,
index,
1,
tokens,
1,
)
)
return visualize_text(vis_data_records)
def sentence_sentiment(input_text, layer):
text_batch = [input_text]
encoding = tokenizer(text_batch, return_tensors="pt")
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
layer = int(layer)
if layer == 0:
layer = model2.roberta.embeddings
else:
layer = getattr(model2.roberta.encoder.layer, str(layer-1))
output = run_attribution_model(input_ids, attention_mask, layer=layer)
return output
def sentiment_explanation_hila(input_text, layer):
text_batch = [input_text]
encoding = tokenizer(text_batch, return_tensors="pt")
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
# true class is positive - 1
true_class = 1
return show_explanation(model, input_ids, attention_mask, start_layer=int(layer))
layer_slider = gradio.Slider(minimum=0, maximum=12, value=8, step=1, label="Select layer")
hila = gradio.Interface(
fn=sentiment_explanation_hila,
inputs=["text", layer_slider],
outputs="html",
)
lig = gradio.Interface(
fn=sentence_sentiment,
inputs=["text", layer_slider],
outputs="html",
)
iface = gradio.Parallel(hila, lig,
title="RoBERTa Explainability",
description="""
Quick comparison demo of explainability for sentiment prediction with RoBERTa. The outputs are from:
* a version of [Hila Chefer's](https://github.com/hila-chefer)
[Transformer-Explanability](https://github.com/hila-chefer/Transformer-Explainability/)
but without the layerwise relevance propagation (as in
[Transformer-MM_explainability](https://github.com/hila-chefer/Transformer-MM-Explainability/))
for a RoBERTa model.
* [captum](https://captum.ai/)'s LayerIntegratedGradients
""",
examples=[
[
"This movie was the best movie I have ever seen! some scenes were ridiculous, but acting was great",
8
],
[
"I really didn't like this movie. Some of the actors were good, but overall the movie was boring",
8
],
],
)
iface.launch()