import os import pickle from contextlib import nullcontext import torch from model import GPTConfig, GPT device = 'cpu' max_new_tokens = 500 # number of tokens generated in each sample temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability ctx = nullcontext() ckpt_path = 'ckpt.pt' checkpoint = torch.load(ckpt_path, map_location='cpu') gptconf = GPTConfig(**checkpoint['model_args']) model = GPT(gptconf) state_dict = checkpoint['model'] unwanted_prefix = '_orig_mod.' for k,v in list(state_dict.items()): if k.startswith(unwanted_prefix): state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) model.load_state_dict(state_dict) model.eval() model.to(device) # model = torch.compile(model) # requires PyTorch 2.0 (optional) print("model loaded !!") meta_path = 'meta.pkl' print(f"Loading meta from {meta_path}...") with open(meta_path, 'rb') as f: meta = pickle.load(f) # TODO want to make this more general to arbitrary encoder/decoder schemes stoi, itos = meta['stoi'], meta['itos'] encode = lambda s: [stoi[c] for c in s] decode = lambda l: ''.join([itos[i] for i in l]) def run(prompt): input_ids = encode(prompt) input_ids = torch.tensor(input_ids, dtype=torch.long, device=device)[None, ...] with torch.no_grad(): with ctx: y = model.generate(input_ids, max_new_tokens, temperature=temperature, top_k=top_k) response = decode(y[0].tolist()) return response