File size: 8,187 Bytes
40d903c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/jeffvestal/ElasticDocs_GPT/blob/main/load_embedding_model.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# ElasticDocs GPT Blog\n",
        "# Loading an embedding from Hugging Face into Elasticsearch\n",
        "\n",
        "This code will show you how to load a supported embedding model from Hugging Face into an elasticsearch cluster in [Elastic Cloud](https://cloud.elastic.co/)\n",
        "\n",
        "[Blog - ChatGPT and Elasticsearch: OpenAI meets private data](https://www.elastic.co/blog/chatgpt-elasticsearch-openai-meets-private-data)"
      ],
      "metadata": {
        "id": "6xoLDtS_6Df1"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Setup\n"
      ],
      "metadata": {
        "id": "DgxCKQS7mCZw"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Install and import required python libraries"
      ],
      "metadata": {
        "id": "Ly1f1P-l9ri8"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "Elastic uses the [eland python library](https://github.com/elastic/eland) to download modesl from Hugging Face hub and load them into elasticsearch"
      ],
      "metadata": {
        "id": "MJAb_8zlPFhQ"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "rUedSzQW9FIF"
      },
      "outputs": [],
      "source": [
        "pip -q install eland elasticsearch sentence_transformers transformers torch==1.11"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from pathlib import Path\n",
        "from eland.ml.pytorch import PyTorchModel\n",
        "from eland.ml.pytorch.transformers import TransformerModel\n",
        "from elasticsearch import Elasticsearch\n",
        "from elasticsearch.client import MlClient\n",
        "\n",
        "import getpass"
      ],
      "metadata": {
        "id": "wyUZXUi4RWWL"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Configure elasticsearch authentication. \n",
        "The recommended authentication approach is using the [Elastic Cloud ID](https://www.elastic.co/guide/en/cloud/current/ec-cloud-id.html) and a [cluster level API key](https://www.elastic.co/guide/en/kibana/current/api-keys.html)\n",
        "\n",
        "You can use any method you wish to set the required credentials. We are using getpass in this example to prompt for credentials to avoide storing them in github."
      ],
      "metadata": {
        "id": "r7nMIbHke37Q"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "es_cloud_id = getpass.getpass('Enter Elastic Cloud ID:  ')\n",
        "es_user = getpass.getpass('Enter cluster username:  ') \n",
        "es_pass = getpass.getpass('Enter cluster password:  ') \n",
        "\n",
        "#es_api_id = getpass.getpass('Enter cluster API key ID:  ') \n",
        "#es_api_key = getpass.getpass('Enter cluster API key:  ')"
      ],
      "metadata": {
        "id": "SSGgYHome69o"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Connect to Elastic Cloud"
      ],
      "metadata": {
        "id": "jL4VDnVp96lf"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "#es = Elasticsearch(cloud_id=es_cloud_id, \n",
        "#                   api_key=(es_api_id, es_api_key)\n",
        "#                   )\n",
        "es = Elasticsearch(cloud_id=es_cloud_id, \n",
        "                   basic_auth=(es_user, es_pass)\n",
        "                   )\n",
        "es.info() # should return cluster info"
      ],
      "metadata": {
        "id": "I8mVJkKmetXo"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Load the model From Hugging Face into Elasticsearch\n",
        "Here we specify the model id from Hugging Face. The easiest way to get this id is clicking the copy the model name icon next to the name on the model page. \n",
        "\n",
        "When calling `TransformerModel` you specify the HF model id and the task type. You can try specifying `auto` and eland will attempt to determine the correct type from info in the model config. This is not always possible so a list of specific `task_type` values can be viewed in the following code: \n",
        "[Supported values](https://github.com/elastic/eland/blob/15a300728876022b206161d71055c67b500a0192/eland/ml/pytorch/transformers.py#*L41*)"
      ],
      "metadata": {
        "id": "uBMWHj-ZmtvE"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Set the model name from Hugging Face and task type\n",
        "hf_model_id='sentence-transformers/all-distilroberta-v1'\n",
        "tm = TransformerModel(model_id=hf_model_id, task_type='text_embedding')\n",
        "\n",
        "#set the modelID as it is named in Elasticsearch\n",
        "es_model_id = tm.elasticsearch_model_id()\n",
        "\n",
        "# Download the model from Hugging Face\n",
        "tmp_path = \"models\"\n",
        "Path(tmp_path).mkdir(parents=True, exist_ok=True)\n",
        "model_path, config, vocab_path = tm.save(tmp_path)\n",
        "\n",
        "# Load the model into Elasticsearch\n",
        "ptm = PyTorchModel(es, es_model_id)\n",
        "ptm.import_model(model_path=model_path, config_path=None, vocab_path=vocab_path, config=config) \n"
      ],
      "metadata": {
        "id": "zPV3oFsKiYFL"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Starting the Model"
      ],
      "metadata": {
        "id": "4UYSzFp3vHdB"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## View information about the model\n",
        "This is not required but can be handy to get a model overivew"
      ],
      "metadata": {
        "id": "wQwfozwznK4Y"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# List the in elasticsearch\n",
        "m = MlClient.get_trained_models(es, model_id=es_model_id)\n",
        "m.body"
      ],
      "metadata": {
        "id": "b4Wv8EJvpfZI"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Deploy the model\n",
        "This will load the model on the ML nodes and start the process(es) making it available for the NLP task"
      ],
      "metadata": {
        "id": "oMGw3sk-pbaN"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "s = MlClient.start_trained_model_deployment(es, model_id=es_model_id)\n",
        "s.body"
      ],
      "metadata": {
        "id": "w5muJ1rLqvUW"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Verify the model started without issue\n",
        "Should output -> {'routing_state': 'started'}"
      ],
      "metadata": {
        "id": "ZytlELrsnn_O"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "stats = MlClient.get_trained_models_stats(es, model_id=es_model_id)\n",
        "stats.body['trained_model_stats'][0]['deployment_stats']['nodes'][0]['routing_state']"
      ],
      "metadata": {
        "id": "ZaQUUWe0Hxwz"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}