Spaces:
Runtime error
Runtime error
Add application file
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +201 -0
- app.py +155 -0
- configs/inference_vi_electra_base.yaml +41 -0
- configs/train_vi_electra_base.yaml +49 -0
- outputs/intensive/checkpoint-23900/config.json +30 -0
- outputs/intensive/checkpoint-23900/pytorch_model.bin +3 -0
- outputs/intensive/checkpoint-23900/rng_state.pth +3 -0
- outputs/intensive/checkpoint-23900/scaler.pt +3 -0
- outputs/intensive/checkpoint-23900/scheduler.pt +3 -0
- outputs/intensive/checkpoint-23900/special_tokens_map.json +7 -0
- outputs/intensive/checkpoint-23900/tokenizer.json +0 -0
- outputs/intensive/checkpoint-23900/tokenizer_config.json +15 -0
- outputs/intensive/checkpoint-23900/trainer_state.json +468 -0
- outputs/intensive/checkpoint-23900/training_args.bin +3 -0
- outputs/intensive/checkpoint-23900/vocab.txt +0 -0
- outputs/intensive/nbest_predictions.json +124 -0
- outputs/intensive/null_odds.json +3 -0
- outputs/intensive/predictions.json +3 -0
- outputs/sketch/checkpoint-23900/config.json +31 -0
- outputs/sketch/checkpoint-23900/pytorch_model.bin +3 -0
- outputs/sketch/checkpoint-23900/rng_state.pth +3 -0
- outputs/sketch/checkpoint-23900/scaler.pt +3 -0
- outputs/sketch/checkpoint-23900/scheduler.pt +3 -0
- outputs/sketch/checkpoint-23900/special_tokens_map.json +7 -0
- outputs/sketch/checkpoint-23900/tokenizer.json +0 -0
- outputs/sketch/checkpoint-23900/tokenizer_config.json +15 -0
- outputs/sketch/checkpoint-23900/trainer_state.json +408 -0
- outputs/sketch/checkpoint-23900/training_args.bin +3 -0
- outputs/sketch/checkpoint-23900/vocab.txt +0 -0
- outputs/sketch/cls_score.json +3 -0
- requirements.txt +6 -0
- retro_reader/__init__.py +3 -0
- retro_reader/__pycache__/__init__.cpython-310.pyc +0 -0
- retro_reader/__pycache__/__init__.cpython-37.pyc +0 -0
- retro_reader/__pycache__/__init__.cpython-38.pyc +0 -0
- retro_reader/__pycache__/base.cpython-310.pyc +0 -0
- retro_reader/__pycache__/base.cpython-37.pyc +0 -0
- retro_reader/__pycache__/base.cpython-38.pyc +0 -0
- retro_reader/__pycache__/constants.cpython-310.pyc +0 -0
- retro_reader/__pycache__/constants.cpython-37.pyc +0 -0
- retro_reader/__pycache__/constants.cpython-38.pyc +0 -0
- retro_reader/__pycache__/metrics.cpython-310.pyc +0 -0
- retro_reader/__pycache__/metrics.cpython-37.pyc +0 -0
- retro_reader/__pycache__/metrics.cpython-38.pyc +0 -0
- retro_reader/__pycache__/preprocess.cpython-310.pyc +0 -0
- retro_reader/__pycache__/preprocess.cpython-37.pyc +0 -0
- retro_reader/__pycache__/preprocess.cpython-38.pyc +0 -0
- retro_reader/__pycache__/retro_reader.cpython-310.pyc +0 -0
- retro_reader/__pycache__/retro_reader.cpython-37.pyc +0 -0
- retro_reader/__pycache__/retro_reader.cpython-38.pyc +0 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
import io
|
4 |
+
import os
|
5 |
+
import yaml
|
6 |
+
import pyarrow
|
7 |
+
import tokenizers
|
8 |
+
|
9 |
+
|
10 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
11 |
+
|
12 |
+
# SETTING PAGE CONFIG TO WIDE MODE
|
13 |
+
st.set_page_config(layout="wide")
|
14 |
+
|
15 |
+
@st.cache
|
16 |
+
def from_library():
|
17 |
+
from retro_reader import RetroReader
|
18 |
+
from retro_reader import constants as C
|
19 |
+
return C, RetroReader
|
20 |
+
|
21 |
+
C, RetroReader = from_library()
|
22 |
+
|
23 |
+
# https://stackoverflow.com/questions/70274841/streamlit-unhashable-typeerror-when-i-use-st-cache
|
24 |
+
my_hash_func = {
|
25 |
+
io.TextIOWrapper: lambda _: None,
|
26 |
+
pyarrow.lib.Buffer: lambda _: 0,
|
27 |
+
tokenizers.Tokenizer: lambda _: None,
|
28 |
+
tokenizers.AddedToken: lambda _: None
|
29 |
+
}
|
30 |
+
|
31 |
+
# @st.cache(hash_funcs=my_hash_func, allow_output_mutation=True)
|
32 |
+
# def load_ko_roberta_large_model():
|
33 |
+
# config_file = "configs/inference_ko_roberta_large.yaml"
|
34 |
+
# return RetroReader.load(config_file=config_file)
|
35 |
+
|
36 |
+
|
37 |
+
# @st.cache(hash_funcs=my_hash_func, allow_output_mutation=True)
|
38 |
+
# def load_ko_electra_small_model():
|
39 |
+
# config_file = "configs/inference_ko_electra_small.yaml"
|
40 |
+
# return RetroReader.load(config_file=config_file)
|
41 |
+
|
42 |
+
|
43 |
+
# @st.cache(hash_funcs=my_hash_func, allow_output_mutation=True)
|
44 |
+
# def load_en_electra_large_model():
|
45 |
+
# config_file = "configs/inference_en_electra_large.yaml"
|
46 |
+
# return RetroReader.load(config_file=config_file)
|
47 |
+
|
48 |
+
@st.cache(hash_funcs=my_hash_func, allow_output_mutation=True)
|
49 |
+
def load_vi_electra_base_model():
|
50 |
+
config_file = "configs/inference_vi_electra_base.yaml"
|
51 |
+
return RetroReader.load(config_file=config_file)
|
52 |
+
|
53 |
+
RETRO_READER_HOST = {
|
54 |
+
# "klue/roberta-large": load_ko_roberta_large_model(),
|
55 |
+
# "monologg/koelectra-small-v3-discriminator": load_ko_electra_small_model(),
|
56 |
+
"google/electra-large-discriminator": load_vi_electra_base_model(),
|
57 |
+
}
|
58 |
+
|
59 |
+
|
60 |
+
def main():
|
61 |
+
st.title("Retrospective Reader Demo")
|
62 |
+
|
63 |
+
# st.markdown("## Model name")
|
64 |
+
# option = st.selectbox(
|
65 |
+
# label="Choose the model used in retro reader",
|
66 |
+
# options=(
|
67 |
+
# # "[ko_KR] klue/roberta-large",
|
68 |
+
# # "[ko_KR] monologg/koelectra-small-v3-discriminator",
|
69 |
+
# "[vi_XX] google/electra-large-discriminator",
|
70 |
+
# ),
|
71 |
+
# index=0,
|
72 |
+
# )
|
73 |
+
# lang_code, model_name = option.split(" ")
|
74 |
+
|
75 |
+
retro_reader = load_vi_electra_base_model()
|
76 |
+
|
77 |
+
# retro_reader = load_model()
|
78 |
+
lang_prefix = "EN"
|
79 |
+
height = 300
|
80 |
+
|
81 |
+
# retro_reader.null_score_diff_threshold = st.sidebar.slider(
|
82 |
+
# label="null_score_diff_threshold",
|
83 |
+
# min_value=-10.0, max_value=10.0, value=0.0, step=1.0,
|
84 |
+
# help="ma!",
|
85 |
+
# )
|
86 |
+
# retro_reader.rear_threshold = st.sidebar.slider(
|
87 |
+
# label="rear_threshold",
|
88 |
+
# min_value=-10.0, max_value=10.0, value=0.0, step=1.0,
|
89 |
+
# help="ma!",
|
90 |
+
# )
|
91 |
+
# retro_reader.n_best_size = st.sidebar.slider(
|
92 |
+
# label="n_best_size",
|
93 |
+
# min_value=1, max_value=50, value=20, step=1,
|
94 |
+
# help="ma!",
|
95 |
+
# )
|
96 |
+
# retro_reader.beta1 = st.sidebar.slider(
|
97 |
+
# label="beta1",
|
98 |
+
# min_value=-10.0, max_value=10.0, value=1.0, step=1.0,
|
99 |
+
# help="ma!",
|
100 |
+
# )
|
101 |
+
# retro_reader.beta2 = st.sidebar.slider(
|
102 |
+
# label="beta2",
|
103 |
+
# min_value=-10.0, max_value=10.0, value=1.0, step=1.0,
|
104 |
+
# help="ma!",
|
105 |
+
# )
|
106 |
+
# retro_reader.best_cof = st.sidebar.slider(
|
107 |
+
# label="best_cof",
|
108 |
+
# min_value=-10.0, max_value=10.0, value=1.0, step=1.0,
|
109 |
+
# help="ma!",
|
110 |
+
# )
|
111 |
+
# return_submodule_outputs = st.sidebar.checkbox('return_submodule_outputs', value=False)
|
112 |
+
return_submodule_outputs = False
|
113 |
+
st.markdown("## Demonstration")
|
114 |
+
with st.form(key="my_form"):
|
115 |
+
query = st.text_input(
|
116 |
+
label="Type your query",
|
117 |
+
value=getattr(C, f"{lang_prefix}_EXAMPLE_QUERY"),
|
118 |
+
max_chars=None,
|
119 |
+
help=getattr(C, f"{lang_prefix}_QUERY_HELP_TEXT"),
|
120 |
+
)
|
121 |
+
context = st.text_area(
|
122 |
+
label="Type your context",
|
123 |
+
value=getattr(C, f"{lang_prefix}_EXAMPLE_CONTEXTS"),
|
124 |
+
height=height,
|
125 |
+
max_chars=None,
|
126 |
+
help=getattr(C, f"{lang_prefix}_CONTEXT_HELP_TEXT"),
|
127 |
+
)
|
128 |
+
submit_button = st.form_submit_button(label="Submit")
|
129 |
+
|
130 |
+
if submit_button:
|
131 |
+
with st.spinner("Please wait.."):
|
132 |
+
outputs = retro_reader(
|
133 |
+
query=query,
|
134 |
+
context=context,
|
135 |
+
return_submodule_outputs=return_submodule_outputs,
|
136 |
+
)
|
137 |
+
answer, score = outputs[0]["id-01"], outputs[1]
|
138 |
+
if not answer:
|
139 |
+
answer = "No answer"
|
140 |
+
st.markdown("## Results")
|
141 |
+
st.write(answer)
|
142 |
+
st.markdown("### Rear Verification Score")
|
143 |
+
st.json(score)
|
144 |
+
# if return_submodule_outputs:
|
145 |
+
# score_ext, nbest_preds, score_diff = outputs[2:]
|
146 |
+
# st.markdown("### Sketch Reader Score (score_ext)")
|
147 |
+
# st.json(score_ext)
|
148 |
+
# st.markdown("### Intensive Reader Score (score_diff)")
|
149 |
+
# st.json(score_diff)
|
150 |
+
# st.markdown("### N Best Predictions (from intensive reader)")
|
151 |
+
# st.json(nbest_preds)
|
152 |
+
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
+
main()
|
configs/inference_vi_electra_base.yaml
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
RetroDataModelArguments:
|
2 |
+
|
3 |
+
# DataArguments
|
4 |
+
max_seq_length: 512
|
5 |
+
max_answer_length: 30
|
6 |
+
doc_stride: 128
|
7 |
+
return_token_type_ids: True
|
8 |
+
pad_to_max_length: True
|
9 |
+
preprocessing_num_workers: 5
|
10 |
+
overwrite_cache: False
|
11 |
+
version_2_with_negative: True
|
12 |
+
null_score_diff_threshold: 0.0
|
13 |
+
rear_threshold: 0.0
|
14 |
+
n_best_size: 20
|
15 |
+
use_choice_logits: False
|
16 |
+
start_n_top: -1
|
17 |
+
end_n_top: -1
|
18 |
+
beta1: 1
|
19 |
+
beta2: 1
|
20 |
+
best_cof: 1
|
21 |
+
|
22 |
+
# ModelArguments
|
23 |
+
use_auth_token: False
|
24 |
+
|
25 |
+
# SketchModelArguments
|
26 |
+
sketch_revision: en-electra-large-sketch
|
27 |
+
sketch_model_name: ./outputs/sketch/checkpoint-23900/
|
28 |
+
sketch_architectures: ElectraForSequenceClassification
|
29 |
+
|
30 |
+
# IntensiveModelArguments
|
31 |
+
intensive_revision: en-electra-largs-intensive
|
32 |
+
intensive_model_name: ./outputs/intensive/checkpoint-23900/
|
33 |
+
intensive_architectures: ElectraForQuestionAnsweringAVPool
|
34 |
+
|
35 |
+
|
36 |
+
TrainingArguments:
|
37 |
+
output_dir: outputs
|
38 |
+
no_cuda: True # If you want to use cuda,
|
39 |
+
# change `no_cuda` to False and `fp16` to True
|
40 |
+
per_device_train_batch_size: 1
|
41 |
+
per_device_eval_batch_size: 1
|
configs/train_vi_electra_base.yaml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
RetroDataModelArguments:
|
2 |
+
|
3 |
+
# DataArguments
|
4 |
+
max_seq_length: 512
|
5 |
+
max_answer_length: 30
|
6 |
+
doc_stride: 128
|
7 |
+
return_token_type_ids: True
|
8 |
+
pad_to_max_length: True
|
9 |
+
preprocessing_num_workers: 5
|
10 |
+
overwrite_cache: False
|
11 |
+
version_2_with_negative: True
|
12 |
+
null_score_diff_threshold: 0.0
|
13 |
+
rear_threshold: 0.0
|
14 |
+
n_best_size: 20
|
15 |
+
use_choice_logits: False
|
16 |
+
start_n_top: -1
|
17 |
+
end_n_top: -1
|
18 |
+
beta1: 1
|
19 |
+
beta2: 1
|
20 |
+
best_cof: 1
|
21 |
+
|
22 |
+
# SketchModelArguments
|
23 |
+
sketch_model_name: NlpHUST/electra-base-vn
|
24 |
+
sketch_architectures: ElectraForSequenceClassification
|
25 |
+
|
26 |
+
# IntensiveModelArguments
|
27 |
+
intensive_model_name: NlpHUST/electra-base-vn
|
28 |
+
intensive_architectures: ElectraForQuestionAnsweringAVPool
|
29 |
+
|
30 |
+
|
31 |
+
TrainingArguments:
|
32 |
+
report_to: wandb
|
33 |
+
run_name: squadv2-electra-large-sketch,squadv2-electra-large-intensive
|
34 |
+
output_dir: outputs
|
35 |
+
overwrite_output_dir: False
|
36 |
+
learning_rate: 2e-5
|
37 |
+
evaluation_strategy: epoch
|
38 |
+
save_strategy: epoch
|
39 |
+
per_device_train_batch_size: 12
|
40 |
+
per_device_eval_batch_size: 12
|
41 |
+
num_train_epochs: 10.0
|
42 |
+
# save_steps: 5000
|
43 |
+
save_total_limit: 2
|
44 |
+
fp16: True
|
45 |
+
warmup_ratio: 0.1
|
46 |
+
weight_decay: 0.01
|
47 |
+
load_best_model_at_end: True
|
48 |
+
metric_for_best_model: f1,exact
|
49 |
+
logging_dir: logs
|
outputs/intensive/checkpoint-23900/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "NlpHUST/electra-base-vn",
|
3 |
+
"architectures": [
|
4 |
+
"ElectraForQuestionAnsweringAVPool"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"embedding_size": 768,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "electra",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"summary_activation": "gelu",
|
22 |
+
"summary_last_dropout": 0.1,
|
23 |
+
"summary_type": "first",
|
24 |
+
"summary_use_proj": true,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.21.1",
|
27 |
+
"type_vocab_size": 2,
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 62000
|
30 |
+
}
|
outputs/intensive/checkpoint-23900/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e31e5f953e409735eb91c55c9c865412dd75d45a99a6a4a0b156b7ae7ac2be2e
|
3 |
+
size 532350957
|
outputs/intensive/checkpoint-23900/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f746b0186296f2263ff69d55705b37e5ffd3f32456e0e399cf3c6b97a0f7d4f
|
3 |
+
size 14503
|
outputs/intensive/checkpoint-23900/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5538239ac364de835557402682c0e056dcc1e97f5ee87f4a2958b61773eb625d
|
3 |
+
size 559
|
outputs/intensive/checkpoint-23900/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d3d346564087658131fb56d711b982ef1a8a44b9b23d2ae1417d098510e4849
|
3 |
+
size 623
|
outputs/intensive/checkpoint-23900/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
outputs/intensive/checkpoint-23900/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
outputs/intensive/checkpoint-23900/tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_basic_tokenize": true,
|
4 |
+
"do_lower_case": false,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"name_or_path": "NlpHUST/electra-base-vn",
|
7 |
+
"never_split": null,
|
8 |
+
"pad_token": "[PAD]",
|
9 |
+
"sep_token": "[SEP]",
|
10 |
+
"special_tokens_map_file": null,
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "ElectraTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
outputs/intensive/checkpoint-23900/trainer_state.json
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 60.008646779074795,
|
3 |
+
"best_model_checkpoint": "outputs/intensive/checkpoint-23900",
|
4 |
+
"epoch": 10.0,
|
5 |
+
"global_step": 23900,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.21,
|
12 |
+
"learning_rate": 4.150627615062761e-06,
|
13 |
+
"loss": 10.7765,
|
14 |
+
"step": 500
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.42,
|
18 |
+
"learning_rate": 8.334728033472804e-06,
|
19 |
+
"loss": 6.9262,
|
20 |
+
"step": 1000
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.63,
|
24 |
+
"learning_rate": 1.2518828451882846e-05,
|
25 |
+
"loss": 5.081,
|
26 |
+
"step": 1500
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.84,
|
30 |
+
"learning_rate": 1.670292887029289e-05,
|
31 |
+
"loss": 4.5427,
|
32 |
+
"step": 2000
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 1.0,
|
36 |
+
"eval_HasAns_exact": 34.392563769995675,
|
37 |
+
"eval_HasAns_f1": 49.07185024538246,
|
38 |
+
"eval_HasAns_total": 9252,
|
39 |
+
"eval_best_exact": 37.602680501513184,
|
40 |
+
"eval_best_exact_thresh": 6.36328125,
|
41 |
+
"eval_best_f1": 52.28196697689995,
|
42 |
+
"eval_best_f1_thresh": 6.36328125,
|
43 |
+
"eval_exact": 34.392563769995675,
|
44 |
+
"eval_f1": 49.07185024538246,
|
45 |
+
"eval_runtime": 157.3533,
|
46 |
+
"eval_samples_per_second": 59.293,
|
47 |
+
"eval_steps_per_second": 4.944,
|
48 |
+
"eval_total": 9252,
|
49 |
+
"step": 2390
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 1.05,
|
53 |
+
"learning_rate": 1.99023709902371e-05,
|
54 |
+
"loss": 4.2046,
|
55 |
+
"step": 2500
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 1.26,
|
59 |
+
"learning_rate": 1.9437470943747097e-05,
|
60 |
+
"loss": 3.8663,
|
61 |
+
"step": 3000
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 1.46,
|
65 |
+
"learning_rate": 1.897257089725709e-05,
|
66 |
+
"loss": 3.7485,
|
67 |
+
"step": 3500
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"epoch": 1.67,
|
71 |
+
"learning_rate": 1.850767085076709e-05,
|
72 |
+
"loss": 3.6324,
|
73 |
+
"step": 4000
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 1.88,
|
77 |
+
"learning_rate": 1.804370060437006e-05,
|
78 |
+
"loss": 3.5147,
|
79 |
+
"step": 4500
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 2.0,
|
83 |
+
"eval_HasAns_exact": 44.32555123216602,
|
84 |
+
"eval_HasAns_f1": 58.396422080934855,
|
85 |
+
"eval_HasAns_total": 9252,
|
86 |
+
"eval_best_exact": 50.72416774751405,
|
87 |
+
"eval_best_exact_thresh": 6.75,
|
88 |
+
"eval_best_f1": 64.79503859628278,
|
89 |
+
"eval_best_f1_thresh": 6.75,
|
90 |
+
"eval_exact": 44.32555123216602,
|
91 |
+
"eval_f1": 58.396422080934855,
|
92 |
+
"eval_runtime": 158.1216,
|
93 |
+
"eval_samples_per_second": 59.005,
|
94 |
+
"eval_steps_per_second": 4.92,
|
95 |
+
"eval_total": 9252,
|
96 |
+
"step": 4780
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 2.09,
|
100 |
+
"learning_rate": 1.7579730357973036e-05,
|
101 |
+
"loss": 3.2078,
|
102 |
+
"step": 5000
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 2.3,
|
106 |
+
"learning_rate": 1.711576011157601e-05,
|
107 |
+
"loss": 2.7938,
|
108 |
+
"step": 5500
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 2.51,
|
112 |
+
"learning_rate": 1.665086006508601e-05,
|
113 |
+
"loss": 2.781,
|
114 |
+
"step": 6000
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 2.72,
|
118 |
+
"learning_rate": 1.6185960018596003e-05,
|
119 |
+
"loss": 2.7884,
|
120 |
+
"step": 6500
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 2.93,
|
124 |
+
"learning_rate": 1.5721059972105997e-05,
|
125 |
+
"loss": 2.6837,
|
126 |
+
"step": 7000
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"epoch": 3.0,
|
130 |
+
"eval_HasAns_exact": 49.48119325551232,
|
131 |
+
"eval_HasAns_f1": 61.58352384463478,
|
132 |
+
"eval_HasAns_total": 9252,
|
133 |
+
"eval_best_exact": 66.6126242974492,
|
134 |
+
"eval_best_exact_thresh": 13.5234375,
|
135 |
+
"eval_best_f1": 78.71495488657156,
|
136 |
+
"eval_best_f1_thresh": 13.5234375,
|
137 |
+
"eval_exact": 49.48119325551232,
|
138 |
+
"eval_f1": 61.58352384463478,
|
139 |
+
"eval_runtime": 161.8926,
|
140 |
+
"eval_samples_per_second": 57.631,
|
141 |
+
"eval_steps_per_second": 4.806,
|
142 |
+
"eval_total": 9252,
|
143 |
+
"step": 7170
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 3.14,
|
147 |
+
"learning_rate": 1.5256159925615994e-05,
|
148 |
+
"loss": 2.2675,
|
149 |
+
"step": 7500
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 3.35,
|
153 |
+
"learning_rate": 1.479125987912599e-05,
|
154 |
+
"loss": 2.0381,
|
155 |
+
"step": 8000
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 3.56,
|
159 |
+
"learning_rate": 1.4326359832635986e-05,
|
160 |
+
"loss": 2.0343,
|
161 |
+
"step": 8500
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 3.77,
|
165 |
+
"learning_rate": 1.3861459786145978e-05,
|
166 |
+
"loss": 2.0476,
|
167 |
+
"step": 9000
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 3.97,
|
171 |
+
"learning_rate": 1.3396559739655974e-05,
|
172 |
+
"loss": 2.0245,
|
173 |
+
"step": 9500
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 4.0,
|
177 |
+
"eval_HasAns_exact": 51.14569822741029,
|
178 |
+
"eval_HasAns_f1": 61.58064803440931,
|
179 |
+
"eval_HasAns_total": 9252,
|
180 |
+
"eval_best_exact": 77.45352356247298,
|
181 |
+
"eval_best_exact_thresh": 17.703125,
|
182 |
+
"eval_best_f1": 87.88847336947204,
|
183 |
+
"eval_best_f1_thresh": 17.703125,
|
184 |
+
"eval_exact": 51.14569822741029,
|
185 |
+
"eval_f1": 61.58064803440931,
|
186 |
+
"eval_runtime": 159.5263,
|
187 |
+
"eval_samples_per_second": 58.486,
|
188 |
+
"eval_steps_per_second": 4.877,
|
189 |
+
"eval_total": 9252,
|
190 |
+
"step": 9560
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 4.18,
|
194 |
+
"learning_rate": 1.293165969316597e-05,
|
195 |
+
"loss": 1.4757,
|
196 |
+
"step": 10000
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 4.39,
|
200 |
+
"learning_rate": 1.2466759646675965e-05,
|
201 |
+
"loss": 1.4193,
|
202 |
+
"step": 10500
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"epoch": 4.6,
|
206 |
+
"learning_rate": 1.200278940027894e-05,
|
207 |
+
"loss": 1.4397,
|
208 |
+
"step": 11000
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 4.81,
|
212 |
+
"learning_rate": 1.1537889353788937e-05,
|
213 |
+
"loss": 1.4482,
|
214 |
+
"step": 11500
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 5.0,
|
218 |
+
"eval_HasAns_exact": 54.31258106355383,
|
219 |
+
"eval_HasAns_f1": 62.505983151723,
|
220 |
+
"eval_HasAns_total": 9252,
|
221 |
+
"eval_best_exact": 84.15477734543883,
|
222 |
+
"eval_best_exact_thresh": 19.4375,
|
223 |
+
"eval_best_f1": 92.34817943360805,
|
224 |
+
"eval_best_f1_thresh": 19.4375,
|
225 |
+
"eval_exact": 54.31258106355383,
|
226 |
+
"eval_f1": 62.505983151723,
|
227 |
+
"eval_runtime": 110.395,
|
228 |
+
"eval_samples_per_second": 84.515,
|
229 |
+
"eval_steps_per_second": 7.047,
|
230 |
+
"eval_total": 9252,
|
231 |
+
"step": 11950
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 5.02,
|
235 |
+
"learning_rate": 1.107298930729893e-05,
|
236 |
+
"loss": 1.4318,
|
237 |
+
"step": 12000
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 5.23,
|
241 |
+
"learning_rate": 1.0608089260808926e-05,
|
242 |
+
"loss": 1.0225,
|
243 |
+
"step": 12500
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 5.44,
|
247 |
+
"learning_rate": 1.0143189214318922e-05,
|
248 |
+
"loss": 1.0562,
|
249 |
+
"step": 13000
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 5.65,
|
253 |
+
"learning_rate": 9.679218967921897e-06,
|
254 |
+
"loss": 1.0755,
|
255 |
+
"step": 13500
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 5.86,
|
259 |
+
"learning_rate": 9.214318921431893e-06,
|
260 |
+
"loss": 1.0455,
|
261 |
+
"step": 14000
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 6.0,
|
265 |
+
"eval_HasAns_exact": 56.91742325983571,
|
266 |
+
"eval_HasAns_f1": 63.24948077893548,
|
267 |
+
"eval_HasAns_total": 9252,
|
268 |
+
"eval_best_exact": 87.2568093385214,
|
269 |
+
"eval_best_exact_thresh": 25.234375,
|
270 |
+
"eval_best_f1": 93.58886685762127,
|
271 |
+
"eval_best_f1_thresh": 25.234375,
|
272 |
+
"eval_exact": 56.91742325983571,
|
273 |
+
"eval_f1": 63.24948077893548,
|
274 |
+
"eval_runtime": 109.5824,
|
275 |
+
"eval_samples_per_second": 85.141,
|
276 |
+
"eval_steps_per_second": 7.1,
|
277 |
+
"eval_total": 9252,
|
278 |
+
"step": 14340
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 6.07,
|
282 |
+
"learning_rate": 8.749418874941889e-06,
|
283 |
+
"loss": 0.9775,
|
284 |
+
"step": 14500
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 6.28,
|
288 |
+
"learning_rate": 8.284518828451885e-06,
|
289 |
+
"loss": 0.7959,
|
290 |
+
"step": 15000
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 6.49,
|
294 |
+
"learning_rate": 7.820548582054858e-06,
|
295 |
+
"loss": 0.7763,
|
296 |
+
"step": 15500
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 6.69,
|
300 |
+
"learning_rate": 7.3565783356578345e-06,
|
301 |
+
"loss": 0.841,
|
302 |
+
"step": 16000
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 6.9,
|
306 |
+
"learning_rate": 6.891678289167829e-06,
|
307 |
+
"loss": 0.8104,
|
308 |
+
"step": 16500
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 7.0,
|
312 |
+
"eval_HasAns_exact": 58.36575875486381,
|
313 |
+
"eval_HasAns_f1": 63.35313006280799,
|
314 |
+
"eval_HasAns_total": 9252,
|
315 |
+
"eval_best_exact": 89.95892779939473,
|
316 |
+
"eval_best_exact_thresh": 28.4375,
|
317 |
+
"eval_best_f1": 94.9462991073391,
|
318 |
+
"eval_best_f1_thresh": 28.4375,
|
319 |
+
"eval_exact": 58.36575875486381,
|
320 |
+
"eval_f1": 63.35313006280799,
|
321 |
+
"eval_runtime": 111.4095,
|
322 |
+
"eval_samples_per_second": 83.745,
|
323 |
+
"eval_steps_per_second": 6.983,
|
324 |
+
"eval_total": 9252,
|
325 |
+
"step": 16730
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 7.11,
|
329 |
+
"learning_rate": 6.426778242677825e-06,
|
330 |
+
"loss": 0.6864,
|
331 |
+
"step": 17000
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 7.32,
|
335 |
+
"learning_rate": 5.96187819618782e-06,
|
336 |
+
"loss": 0.6432,
|
337 |
+
"step": 17500
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"epoch": 7.53,
|
341 |
+
"learning_rate": 5.496978149697816e-06,
|
342 |
+
"loss": 0.6308,
|
343 |
+
"step": 18000
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"epoch": 7.74,
|
347 |
+
"learning_rate": 5.032078103207811e-06,
|
348 |
+
"loss": 0.6595,
|
349 |
+
"step": 18500
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 7.95,
|
353 |
+
"learning_rate": 4.567178056717806e-06,
|
354 |
+
"loss": 0.6227,
|
355 |
+
"step": 19000
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 8.0,
|
359 |
+
"eval_HasAns_exact": 59.262862083873756,
|
360 |
+
"eval_HasAns_f1": 63.181652613846246,
|
361 |
+
"eval_HasAns_total": 9252,
|
362 |
+
"eval_best_exact": 91.74232598357112,
|
363 |
+
"eval_best_exact_thresh": 29.84375,
|
364 |
+
"eval_best_f1": 95.6611165135438,
|
365 |
+
"eval_best_f1_thresh": 29.84375,
|
366 |
+
"eval_exact": 59.262862083873756,
|
367 |
+
"eval_f1": 63.181652613846246,
|
368 |
+
"eval_runtime": 111.1644,
|
369 |
+
"eval_samples_per_second": 83.93,
|
370 |
+
"eval_steps_per_second": 6.999,
|
371 |
+
"eval_total": 9252,
|
372 |
+
"step": 19120
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 8.16,
|
376 |
+
"learning_rate": 4.102278010227801e-06,
|
377 |
+
"loss": 0.5235,
|
378 |
+
"step": 19500
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 8.37,
|
382 |
+
"learning_rate": 3.638307763830777e-06,
|
383 |
+
"loss": 0.4937,
|
384 |
+
"step": 20000
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 8.58,
|
388 |
+
"learning_rate": 3.173407717340772e-06,
|
389 |
+
"loss": 0.5096,
|
390 |
+
"step": 20500
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 8.79,
|
394 |
+
"learning_rate": 2.7085076708507676e-06,
|
395 |
+
"loss": 0.5335,
|
396 |
+
"step": 21000
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 9.0,
|
400 |
+
"learning_rate": 2.2436076243607625e-06,
|
401 |
+
"loss": 0.5032,
|
402 |
+
"step": 21500
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 9.0,
|
406 |
+
"eval_HasAns_exact": 59.814094249891916,
|
407 |
+
"eval_HasAns_f1": 63.04596094446208,
|
408 |
+
"eval_HasAns_total": 9252,
|
409 |
+
"eval_best_exact": 92.19628188499784,
|
410 |
+
"eval_best_exact_thresh": 30.34375,
|
411 |
+
"eval_best_f1": 95.42814857956823,
|
412 |
+
"eval_best_f1_thresh": 30.34375,
|
413 |
+
"eval_exact": 59.814094249891916,
|
414 |
+
"eval_f1": 63.04596094446208,
|
415 |
+
"eval_runtime": 110.9375,
|
416 |
+
"eval_samples_per_second": 84.101,
|
417 |
+
"eval_steps_per_second": 7.013,
|
418 |
+
"eval_total": 9252,
|
419 |
+
"step": 21510
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 9.21,
|
423 |
+
"learning_rate": 1.778707577870758e-06,
|
424 |
+
"loss": 0.4126,
|
425 |
+
"step": 22000
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 9.41,
|
429 |
+
"learning_rate": 1.3138075313807533e-06,
|
430 |
+
"loss": 0.4188,
|
431 |
+
"step": 22500
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 9.62,
|
435 |
+
"learning_rate": 8.498372849837285e-07,
|
436 |
+
"loss": 0.4326,
|
437 |
+
"step": 23000
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 9.83,
|
441 |
+
"learning_rate": 3.858670385867039e-07,
|
442 |
+
"loss": 0.4378,
|
443 |
+
"step": 23500
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 10.0,
|
447 |
+
"eval_HasAns_exact": 60.008646779074795,
|
448 |
+
"eval_HasAns_f1": 62.92824770736451,
|
449 |
+
"eval_HasAns_total": 9252,
|
450 |
+
"eval_best_exact": 92.7583225248595,
|
451 |
+
"eval_best_exact_thresh": 31.09375,
|
452 |
+
"eval_best_f1": 95.67792345314943,
|
453 |
+
"eval_best_f1_thresh": 31.09375,
|
454 |
+
"eval_exact": 60.008646779074795,
|
455 |
+
"eval_f1": 62.92824770736451,
|
456 |
+
"eval_runtime": 107.3386,
|
457 |
+
"eval_samples_per_second": 86.921,
|
458 |
+
"eval_steps_per_second": 7.248,
|
459 |
+
"eval_total": 9252,
|
460 |
+
"step": 23900
|
461 |
+
}
|
462 |
+
],
|
463 |
+
"max_steps": 23900,
|
464 |
+
"num_train_epochs": 10,
|
465 |
+
"total_flos": 7.493865187135488e+16,
|
466 |
+
"trial_name": null,
|
467 |
+
"trial_params": null
|
468 |
+
}
|
outputs/intensive/checkpoint-23900/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a2ea25156a9af14389b6fb124369129c6a6bd78f82c00c33c31d87753dbaa92
|
3 |
+
size 3311
|
outputs/intensive/checkpoint-23900/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
outputs/intensive/nbest_predictions.json
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"id-01": [
|
3 |
+
{
|
4 |
+
"start_logit": 6.045530319213867,
|
5 |
+
"end_logit": 5.49807071685791,
|
6 |
+
"text": "Nguy\u1ec5n \u0110\u1ee9c C\u01b0\u1eddng",
|
7 |
+
"probability": 0.9822916984558105
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"start_logit": 6.045530319213867,
|
11 |
+
"end_logit": 1.412649154663086,
|
12 |
+
"text": "Nguy\u1ec5n \u0110\u1ee9c C\u01b0\u1eddng (sinh ng\u00e0y 13 th\u00e1ng 5 n\u0103m 1989 t\u1ea1i Qu\u1ea3ng Ninh, nh\u01b0ng qu\u00ea g\u1ed1c \u1edf \u00c2n Thi, H\u01b0ng Y\u00ean)",
|
13 |
+
"probability": 0.01651826500892639
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"start_logit": 6.045530319213867,
|
17 |
+
"end_logit": -1.957545280456543,
|
18 |
+
"text": "Nguy\u1ec5n",
|
19 |
+
"probability": 0.0005679467576555908
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"start_logit": -2.662353992462158,
|
23 |
+
"end_logit": 5.49807071685791,
|
24 |
+
"text": "C\u01b0\u1eddng",
|
25 |
+
"probability": 0.0001623508578632027
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"start_logit": -2.665097713470459,
|
29 |
+
"end_logit": 5.49807071685791,
|
30 |
+
"text": "\u0110\u1ee9c C\u01b0\u1eddng",
|
31 |
+
"probability": 0.00016190586029551923
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"start_logit": 6.045530319213867,
|
35 |
+
"end_logit": -3.320735454559326,
|
36 |
+
"text": "Nguy\u1ec5n \u0110\u1ee9c C\u01b0\u1eddng (sinh ng\u00e0y 13 th\u00e1ng 5 n\u0103m 1989",
|
37 |
+
"probability": 0.0001453054283047095
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"start_logit": 1.1949851512908936,
|
41 |
+
"end_logit": 0.35255151987075806,
|
42 |
+
"text": "l\u00e0 m\u1ed9t nam rapper v\u00e0 nh\u1ea1c s\u0129 ng\u01b0\u1eddi Vi\u1ec7t Nam",
|
43 |
+
"probability": 4.477184484130703e-05
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"start_logit": 6.045530319213867,
|
47 |
+
"end_logit": -4.638460636138916,
|
48 |
+
"text": "Nguy\u1ec5n \u0110\u1ee9c C\u01b0\u1eddng (",
|
49 |
+
"probability": 3.890457082889043e-05
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"start_logit": 6.045530319213867,
|
53 |
+
"end_logit": -5.202346324920654,
|
54 |
+
"text": "Nguy\u1ec5n \u0110\u1ee9c",
|
55 |
+
"probability": 2.2136480765766464e-05
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"start_logit": 0.23849983513355255,
|
59 |
+
"end_logit": 0.35255151987075806,
|
60 |
+
"text": "m\u1ed9t nam rapper v\u00e0 nh\u1ea1c s\u0129 ng\u01b0\u1eddi Vi\u1ec7t Nam",
|
61 |
+
"probability": 1.720317050057929e-05
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"start_logit": 6.045530319213867,
|
65 |
+
"end_logit": -6.049441814422607,
|
66 |
+
"text": "Nguy\u1ec5n \u0110\u1ee9c C\u01b0\u1eddng (sinh ng\u00e0y 13 th\u00e1ng 5 n\u0103m 1989 t\u1ea1i Qu\u1ea3ng Ninh, nh\u01b0ng qu\u00ea g\u1ed1c \u1edf \u00c2n Thi",
|
67 |
+
"probability": 9.488983778283e-06
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"start_logit": 6.045530319213867,
|
71 |
+
"end_logit": -6.32877254486084,
|
72 |
+
"text": "Nguy\u1ec5n \u0110\u1ee9c C\u01b0\u1eddng (sinh ng\u00e0y 13 th\u00e1ng 5 n\u0103m 1989 t\u1ea1i Qu\u1ea3ng Ninh, nh\u01b0ng qu\u00ea g\u1ed1c \u1edf \u00c2n Thi, H\u01b0ng Y\u00ean",
|
73 |
+
"probability": 7.176417511800537e-06
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"start_logit": 6.045530319213867,
|
77 |
+
"end_logit": -6.484272003173828,
|
78 |
+
"text": "Nguy\u1ec5n \u0110\u1ee9c C\u01b0\u1eddng (sinh ng\u00e0y 13 th\u00e1ng 5 n\u0103m 1989 t\u1ea1i Qu\u1ea3ng Ninh, nh\u01b0ng qu\u00ea g\u1ed1c \u1edf \u00c2n Thi, H\u01b0ng Y\u00ean),",
|
79 |
+
"probability": 6.142924121377291e-06
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"start_logit": -2.662353992462158,
|
83 |
+
"end_logit": 1.412649154663086,
|
84 |
+
"text": "C\u01b0\u1eddng (sinh ng\u00e0y 13 th\u00e1ng 5 n\u0103m 1989 t\u1ea1i Qu\u1ea3ng Ninh, nh\u01b0ng qu\u00ea g\u1ed1c \u1edf \u00c2n Thi, H\u01b0ng Y\u00ean)",
|
85 |
+
"probability": 2.7300973215460544e-06
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"start_logit": -2.665097713470459,
|
89 |
+
"end_logit": 1.412649154663086,
|
90 |
+
"text": "\u0110\u1ee9c C\u01b0\u1eddng (sinh ng\u00e0y 13 th\u00e1ng 5 n\u0103m 1989 t\u1ea1i Qu\u1ea3ng Ninh, nh\u01b0ng qu\u00ea g\u1ed1c \u1edf \u00c2n Thi, H\u01b0ng Y\u00ean)",
|
91 |
+
"probability": 2.722619228734402e-06
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"start_logit": -1.3381463289260864,
|
95 |
+
"end_logit": -1.3950865268707275,
|
96 |
+
"text": "",
|
97 |
+
"probability": 6.1928426475788e-07
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"start_logit": -4.9331583976745605,
|
101 |
+
"end_logit": 1.412649154663086,
|
102 |
+
"text": "sinh ng\u00e0y 13 th\u00e1ng 5 n\u0103m 1989 t\u1ea1i Qu\u1ea3ng Ninh, nh\u01b0ng qu\u00ea g\u1ed1c \u1edf \u00c2n Thi, H\u01b0ng Y\u00ean)",
|
103 |
+
"probability": 2.8182577693769417e-07
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"start_logit": -5.086843013763428,
|
107 |
+
"end_logit": 1.412649154663086,
|
108 |
+
"text": ")",
|
109 |
+
"probability": 2.416775828351092e-07
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"start_logit": 1.1949851512908936,
|
113 |
+
"end_logit": -5.277959823608398,
|
114 |
+
"text": "l\u00e0 m\u1ed9t nam rapper",
|
115 |
+
"probability": 1.6058500307281065e-07
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"start_logit": -5.693793296813965,
|
119 |
+
"end_logit": 1.412649154663086,
|
120 |
+
"text": "(sinh ng\u00e0y 13 th\u00e1ng 5 n\u0103m 1989 t\u1ea1i Qu\u1ea3ng Ninh, nh\u01b0ng qu\u00ea g\u1ed1c \u1edf \u00c2n Thi, H\u01b0ng Y\u00ean)",
|
121 |
+
"probability": 1.3171673174383614e-07
|
122 |
+
}
|
123 |
+
]
|
124 |
+
}
|
outputs/intensive/null_odds.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"id-01": -14.276833534240723
|
3 |
+
}
|
outputs/intensive/predictions.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"id-01": "Nguy\u1ec5n \u0110\u1ee9c C\u01b0\u1eddng"
|
3 |
+
}
|
outputs/sketch/checkpoint-23900/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "NlpHUST/electra-base-vn",
|
3 |
+
"architectures": [
|
4 |
+
"ElectraForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"embedding_size": 768,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "electra",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"problem_type": "single_label_classification",
|
22 |
+
"summary_activation": "gelu",
|
23 |
+
"summary_last_dropout": 0.1,
|
24 |
+
"summary_type": "first",
|
25 |
+
"summary_use_proj": true,
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.21.1",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 62000
|
31 |
+
}
|
outputs/sketch/checkpoint-23900/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee5ef0330b58fc9299f1f07ac1f057596d02f2350f66ed80eb8f1479aef56bec
|
3 |
+
size 534707117
|
outputs/sketch/checkpoint-23900/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37085a94bb8702116f42aba75288847f204d26e3445d8ef1e587654032735258
|
3 |
+
size 14503
|
outputs/sketch/checkpoint-23900/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d3fcb2fd6a93bcec231636ca78e55ddc7e0cf35aa3208c3cb78468921200b8d
|
3 |
+
size 559
|
outputs/sketch/checkpoint-23900/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4037b40aa9d735b8382af812ddac621c3546c12b2b539da6400f157fd74b61ae
|
3 |
+
size 623
|
outputs/sketch/checkpoint-23900/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
outputs/sketch/checkpoint-23900/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
outputs/sketch/checkpoint-23900/tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_basic_tokenize": true,
|
4 |
+
"do_lower_case": false,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"name_or_path": "NlpHUST/electra-base-vn",
|
7 |
+
"never_split": null,
|
8 |
+
"pad_token": "[PAD]",
|
9 |
+
"sep_token": "[SEP]",
|
10 |
+
"special_tokens_map_file": null,
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "ElectraTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
outputs/sketch/checkpoint-23900/trainer_state.json
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.9979028875625101,
|
3 |
+
"best_model_checkpoint": "outputs/sketch/checkpoint-23900",
|
4 |
+
"epoch": 10.0,
|
5 |
+
"global_step": 23900,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.21,
|
12 |
+
"learning_rate": 4.184100418410042e-06,
|
13 |
+
"loss": 0.6451,
|
14 |
+
"step": 500
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.42,
|
18 |
+
"learning_rate": 8.368200836820084e-06,
|
19 |
+
"loss": 0.6334,
|
20 |
+
"step": 1000
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.63,
|
24 |
+
"learning_rate": 1.2552301255230125e-05,
|
25 |
+
"loss": 0.6162,
|
26 |
+
"step": 1500
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.84,
|
30 |
+
"learning_rate": 1.6719665271966527e-05,
|
31 |
+
"loss": 0.5225,
|
32 |
+
"step": 2000
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 1.0,
|
36 |
+
"eval_accuracy": 0.8397642015005359,
|
37 |
+
"eval_f1": 0.7340330901974738,
|
38 |
+
"eval_precision": 0.8176773682124455,
|
39 |
+
"eval_recall": 0.6659134925758554,
|
40 |
+
"eval_runtime": 59.1615,
|
41 |
+
"eval_samples_per_second": 157.704,
|
42 |
+
"eval_steps_per_second": 13.15,
|
43 |
+
"step": 2390
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"epoch": 1.05,
|
47 |
+
"learning_rate": 1.9899581589958163e-05,
|
48 |
+
"loss": 0.4783,
|
49 |
+
"step": 2500
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 1.26,
|
53 |
+
"learning_rate": 1.9434681543468157e-05,
|
54 |
+
"loss": 0.4164,
|
55 |
+
"step": 3000
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 1.46,
|
59 |
+
"learning_rate": 1.896978149697815e-05,
|
60 |
+
"loss": 0.4054,
|
61 |
+
"step": 3500
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 1.67,
|
65 |
+
"learning_rate": 1.8505811250581126e-05,
|
66 |
+
"loss": 0.3954,
|
67 |
+
"step": 4000
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"epoch": 1.88,
|
71 |
+
"learning_rate": 1.8040911204091124e-05,
|
72 |
+
"loss": 0.4002,
|
73 |
+
"step": 4500
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 2.0,
|
77 |
+
"eval_accuracy": 0.9234726688102894,
|
78 |
+
"eval_f1": 0.8800403225806451,
|
79 |
+
"eval_precision": 0.9176594253679047,
|
80 |
+
"eval_recall": 0.8453841187863137,
|
81 |
+
"eval_runtime": 106.4194,
|
82 |
+
"eval_samples_per_second": 87.672,
|
83 |
+
"eval_steps_per_second": 7.311,
|
84 |
+
"step": 4780
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 2.09,
|
88 |
+
"learning_rate": 1.75769409576941e-05,
|
89 |
+
"loss": 0.3342,
|
90 |
+
"step": 5000
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 2.3,
|
94 |
+
"learning_rate": 1.7112040911204093e-05,
|
95 |
+
"loss": 0.2597,
|
96 |
+
"step": 5500
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 2.51,
|
100 |
+
"learning_rate": 1.6647140864714087e-05,
|
101 |
+
"loss": 0.2773,
|
102 |
+
"step": 6000
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 2.72,
|
106 |
+
"learning_rate": 1.6182240818224085e-05,
|
107 |
+
"loss": 0.2942,
|
108 |
+
"step": 6500
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 2.93,
|
112 |
+
"learning_rate": 1.571827057182706e-05,
|
113 |
+
"loss": 0.2799,
|
114 |
+
"step": 7000
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 3.0,
|
118 |
+
"eval_accuracy": 0.9638799571275456,
|
119 |
+
"eval_f1": 0.9449076344613373,
|
120 |
+
"eval_precision": 0.9572706194104008,
|
121 |
+
"eval_recall": 0.9328599096191091,
|
122 |
+
"eval_runtime": 105.0123,
|
123 |
+
"eval_samples_per_second": 88.847,
|
124 |
+
"eval_steps_per_second": 7.409,
|
125 |
+
"step": 7170
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 3.14,
|
129 |
+
"learning_rate": 1.5253370525337054e-05,
|
130 |
+
"loss": 0.2081,
|
131 |
+
"step": 7500
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"epoch": 3.35,
|
135 |
+
"learning_rate": 1.478847047884705e-05,
|
136 |
+
"loss": 0.202,
|
137 |
+
"step": 8000
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 3.56,
|
141 |
+
"learning_rate": 1.4323570432357044e-05,
|
142 |
+
"loss": 0.1983,
|
143 |
+
"step": 8500
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 3.77,
|
147 |
+
"learning_rate": 1.385960018596002e-05,
|
148 |
+
"loss": 0.2074,
|
149 |
+
"step": 9000
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 3.97,
|
153 |
+
"learning_rate": 1.3394700139470016e-05,
|
154 |
+
"loss": 0.2099,
|
155 |
+
"step": 9500
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 4.0,
|
159 |
+
"eval_accuracy": 0.9785637727759914,
|
160 |
+
"eval_f1": 0.9672988881621974,
|
161 |
+
"eval_precision": 0.9801192842942346,
|
162 |
+
"eval_recall": 0.9548095545513234,
|
163 |
+
"eval_runtime": 142.4236,
|
164 |
+
"eval_samples_per_second": 65.509,
|
165 |
+
"eval_steps_per_second": 5.463,
|
166 |
+
"step": 9560
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 4.18,
|
170 |
+
"learning_rate": 1.2929800092980009e-05,
|
171 |
+
"loss": 0.1391,
|
172 |
+
"step": 10000
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 4.39,
|
176 |
+
"learning_rate": 1.2464900046490005e-05,
|
177 |
+
"loss": 0.1301,
|
178 |
+
"step": 10500
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 4.6,
|
182 |
+
"learning_rate": 1.2000929800092982e-05,
|
183 |
+
"loss": 0.1409,
|
184 |
+
"step": 11000
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 4.81,
|
188 |
+
"learning_rate": 1.1536029753602976e-05,
|
189 |
+
"loss": 0.1544,
|
190 |
+
"step": 11500
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 5.0,
|
194 |
+
"eval_accuracy": 0.9836012861736334,
|
195 |
+
"eval_f1": 0.9755552005112638,
|
196 |
+
"eval_precision": 0.9658335969629864,
|
197 |
+
"eval_recall": 0.9854744996772111,
|
198 |
+
"eval_runtime": 107.7483,
|
199 |
+
"eval_samples_per_second": 86.591,
|
200 |
+
"eval_steps_per_second": 7.221,
|
201 |
+
"step": 11950
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 5.02,
|
205 |
+
"learning_rate": 1.1071129707112971e-05,
|
206 |
+
"loss": 0.1549,
|
207 |
+
"step": 12000
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 5.23,
|
211 |
+
"learning_rate": 1.0606229660622967e-05,
|
212 |
+
"loss": 0.092,
|
213 |
+
"step": 12500
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 5.44,
|
217 |
+
"learning_rate": 1.014225941422594e-05,
|
218 |
+
"loss": 0.0973,
|
219 |
+
"step": 13000
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 5.65,
|
223 |
+
"learning_rate": 9.678289167828918e-06,
|
224 |
+
"loss": 0.122,
|
225 |
+
"step": 13500
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 5.86,
|
229 |
+
"learning_rate": 9.213389121338912e-06,
|
230 |
+
"loss": 0.1221,
|
231 |
+
"step": 14000
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 6.0,
|
235 |
+
"eval_accuracy": 0.9926045016077171,
|
236 |
+
"eval_f1": 0.9888799355358582,
|
237 |
+
"eval_precision": 0.9874476987447699,
|
238 |
+
"eval_recall": 0.9903163331181407,
|
239 |
+
"eval_runtime": 135.6226,
|
240 |
+
"eval_samples_per_second": 68.794,
|
241 |
+
"eval_steps_per_second": 5.737,
|
242 |
+
"step": 14340
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 6.07,
|
246 |
+
"learning_rate": 8.748489074848908e-06,
|
247 |
+
"loss": 0.1079,
|
248 |
+
"step": 14500
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 6.28,
|
252 |
+
"learning_rate": 8.283589028358903e-06,
|
253 |
+
"loss": 0.0886,
|
254 |
+
"step": 15000
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 6.49,
|
258 |
+
"learning_rate": 7.818688981868899e-06,
|
259 |
+
"loss": 0.0816,
|
260 |
+
"step": 15500
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 6.69,
|
264 |
+
"learning_rate": 7.354718735471874e-06,
|
265 |
+
"loss": 0.0723,
|
266 |
+
"step": 16000
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 6.9,
|
270 |
+
"learning_rate": 6.889818688981869e-06,
|
271 |
+
"loss": 0.0941,
|
272 |
+
"step": 16500
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 7.0,
|
276 |
+
"eval_accuracy": 0.9945337620578778,
|
277 |
+
"eval_f1": 0.9917966865047451,
|
278 |
+
"eval_precision": 0.9884578390509778,
|
279 |
+
"eval_recall": 0.9951581665590704,
|
280 |
+
"eval_runtime": 105.7234,
|
281 |
+
"eval_samples_per_second": 88.249,
|
282 |
+
"eval_steps_per_second": 7.359,
|
283 |
+
"step": 16730
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 7.11,
|
287 |
+
"learning_rate": 6.424918642491865e-06,
|
288 |
+
"loss": 0.066,
|
289 |
+
"step": 17000
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 7.32,
|
293 |
+
"learning_rate": 5.96001859600186e-06,
|
294 |
+
"loss": 0.0537,
|
295 |
+
"step": 17500
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"epoch": 7.53,
|
299 |
+
"learning_rate": 5.496048349604835e-06,
|
300 |
+
"loss": 0.0484,
|
301 |
+
"step": 18000
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 7.74,
|
305 |
+
"learning_rate": 5.031148303114831e-06,
|
306 |
+
"loss": 0.0544,
|
307 |
+
"step": 18500
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"epoch": 7.95,
|
311 |
+
"learning_rate": 4.566248256624826e-06,
|
312 |
+
"loss": 0.0673,
|
313 |
+
"step": 19000
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 8.0,
|
317 |
+
"eval_accuracy": 0.9965702036441586,
|
318 |
+
"eval_f1": 0.9948403740728798,
|
319 |
+
"eval_precision": 0.9938788659793815,
|
320 |
+
"eval_recall": 0.9958037443511943,
|
321 |
+
"eval_runtime": 107.9506,
|
322 |
+
"eval_samples_per_second": 86.428,
|
323 |
+
"eval_steps_per_second": 7.207,
|
324 |
+
"step": 19120
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 8.16,
|
328 |
+
"learning_rate": 4.101348210134822e-06,
|
329 |
+
"loss": 0.035,
|
330 |
+
"step": 19500
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"epoch": 8.37,
|
334 |
+
"learning_rate": 3.636448163644817e-06,
|
335 |
+
"loss": 0.0337,
|
336 |
+
"step": 20000
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 8.58,
|
340 |
+
"learning_rate": 3.1724779172477922e-06,
|
341 |
+
"loss": 0.0397,
|
342 |
+
"step": 20500
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 8.79,
|
346 |
+
"learning_rate": 2.707577870757787e-06,
|
347 |
+
"loss": 0.0398,
|
348 |
+
"step": 21000
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 9.0,
|
352 |
+
"learning_rate": 2.242677824267783e-06,
|
353 |
+
"loss": 0.0513,
|
354 |
+
"step": 21500
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 9.0,
|
358 |
+
"eval_accuracy": 0.9980707395498393,
|
359 |
+
"eval_f1": 0.9970939618986115,
|
360 |
+
"eval_precision": 0.9974160206718347,
|
361 |
+
"eval_recall": 0.9967721110393802,
|
362 |
+
"eval_runtime": 106.5837,
|
363 |
+
"eval_samples_per_second": 87.537,
|
364 |
+
"eval_steps_per_second": 7.299,
|
365 |
+
"step": 21510
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 9.21,
|
369 |
+
"learning_rate": 1.777777777777778e-06,
|
370 |
+
"loss": 0.0219,
|
371 |
+
"step": 22000
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 9.41,
|
375 |
+
"learning_rate": 1.3128777312877733e-06,
|
376 |
+
"loss": 0.029,
|
377 |
+
"step": 22500
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 9.62,
|
381 |
+
"learning_rate": 8.489074848907486e-07,
|
382 |
+
"loss": 0.0274,
|
383 |
+
"step": 23000
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 9.83,
|
387 |
+
"learning_rate": 3.8400743840074387e-07,
|
388 |
+
"loss": 0.0308,
|
389 |
+
"step": 23500
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 10.0,
|
393 |
+
"eval_accuracy": 0.9986066452304394,
|
394 |
+
"eval_f1": 0.9979028875625101,
|
395 |
+
"eval_precision": 0.9974201870364399,
|
396 |
+
"eval_recall": 0.9983860555196902,
|
397 |
+
"eval_runtime": 106.9592,
|
398 |
+
"eval_samples_per_second": 87.23,
|
399 |
+
"eval_steps_per_second": 7.274,
|
400 |
+
"step": 23900
|
401 |
+
}
|
402 |
+
],
|
403 |
+
"max_steps": 23900,
|
404 |
+
"num_train_epochs": 10,
|
405 |
+
"total_flos": 7.54576195666944e+16,
|
406 |
+
"trial_name": null,
|
407 |
+
"trial_params": null
|
408 |
+
}
|
outputs/sketch/checkpoint-23900/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0f222ab026cf85beb8d17adfee575acbc981e16c71caead2903f720c9273d20
|
3 |
+
size 3311
|
outputs/sketch/checkpoint-23900/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
outputs/sketch/cls_score.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"id-01": 10.994331359863281
|
3 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.21.1
|
2 |
+
wandb==0.13.3
|
3 |
+
torch==1.12.1
|
4 |
+
datasets
|
5 |
+
sklearn
|
6 |
+
streamlit==1.2.0
|
retro_reader/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .retro_reader import RetroReader
|
2 |
+
|
3 |
+
__all__ = ["constants", "retro_reader", "args"]
|
retro_reader/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (275 Bytes). View file
|
|
retro_reader/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (269 Bytes). View file
|
|
retro_reader/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (273 Bytes). View file
|
|
retro_reader/__pycache__/base.cpython-310.pyc
ADDED
Binary file (5.52 kB). View file
|
|
retro_reader/__pycache__/base.cpython-37.pyc
ADDED
Binary file (5.39 kB). View file
|
|
retro_reader/__pycache__/base.cpython-38.pyc
ADDED
Binary file (5.46 kB). View file
|
|
retro_reader/__pycache__/constants.cpython-310.pyc
ADDED
Binary file (5.22 kB). View file
|
|
retro_reader/__pycache__/constants.cpython-37.pyc
ADDED
Binary file (5.03 kB). View file
|
|
retro_reader/__pycache__/constants.cpython-38.pyc
ADDED
Binary file (5.21 kB). View file
|
|
retro_reader/__pycache__/metrics.cpython-310.pyc
ADDED
Binary file (1.55 kB). View file
|
|
retro_reader/__pycache__/metrics.cpython-37.pyc
ADDED
Binary file (1.54 kB). View file
|
|
retro_reader/__pycache__/metrics.cpython-38.pyc
ADDED
Binary file (1.55 kB). View file
|
|
retro_reader/__pycache__/preprocess.cpython-310.pyc
ADDED
Binary file (5.47 kB). View file
|
|
retro_reader/__pycache__/preprocess.cpython-37.pyc
ADDED
Binary file (5.67 kB). View file
|
|
retro_reader/__pycache__/preprocess.cpython-38.pyc
ADDED
Binary file (5.41 kB). View file
|
|
retro_reader/__pycache__/retro_reader.cpython-310.pyc
ADDED
Binary file (16.2 kB). View file
|
|
retro_reader/__pycache__/retro_reader.cpython-37.pyc
ADDED
Binary file (16.1 kB). View file
|
|
retro_reader/__pycache__/retro_reader.cpython-38.pyc
ADDED
Binary file (16.3 kB). View file
|
|