Upload 3 files
Browse files- app.py +97 -0
- requirements.txt +0 -0
- utils.py +7 -0
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
from diffusers import I2VGenXLPipeline, DiffusionPipeline
|
5 |
+
from torchvision.transforms.functional import to_tensor
|
6 |
+
from PIL import Image
|
7 |
+
from utils import create_progress_updater
|
8 |
+
|
9 |
+
if gr.NO_RELOAD:
|
10 |
+
n_sdxl_steps = 50
|
11 |
+
n_i2v_steps = 50
|
12 |
+
high_noise_frac = 0.8
|
13 |
+
negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
|
14 |
+
generator = torch.manual_seed(8888)
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
total_steps = n_sdxl_steps + n_i2v_steps
|
17 |
+
print("Device:", device)
|
18 |
+
|
19 |
+
base = DiffusionPipeline.from_pretrained(
|
20 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
21 |
+
torch_dtype=torch.float16,
|
22 |
+
variant="fp16",
|
23 |
+
use_safetensors=True,
|
24 |
+
)
|
25 |
+
# refiner = DiffusionPipeline.from_pretrained(
|
26 |
+
# "stabilityai/stable-diffusion-xl-refiner-1.0",
|
27 |
+
# text_encoder_2=base.text_encoder_2,
|
28 |
+
# vae=base.vae,
|
29 |
+
# torch_dtype=torch.float16,
|
30 |
+
# use_safetensors=True,
|
31 |
+
# variant="fp16",
|
32 |
+
# )
|
33 |
+
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
|
34 |
+
|
35 |
+
# base.to("cuda")
|
36 |
+
# refiner.to("cuda")
|
37 |
+
# pipeline.to("cuda")
|
38 |
+
|
39 |
+
# base.unet = torch.compile(base.unet, mode="reduce-overhead", fullgraph=True)
|
40 |
+
# refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
|
41 |
+
# pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
|
42 |
+
base.enable_model_cpu_offload()
|
43 |
+
pipeline.enable_model_cpu_offload()
|
44 |
+
pipeline.unet.enable_forward_chunking()
|
45 |
+
|
46 |
+
def generate(prompt: str, progress=gr.Progress()):
|
47 |
+
progress((0, 100), desc="Generating first frame...")
|
48 |
+
image = base(
|
49 |
+
prompt=prompt,
|
50 |
+
num_inference_steps=n_sdxl_steps,
|
51 |
+
callback_on_step_end=create_progress_updater(
|
52 |
+
start=0,
|
53 |
+
total=total_steps,
|
54 |
+
desc="Generating first frame...",
|
55 |
+
progress=progress,
|
56 |
+
),
|
57 |
+
).images[0]
|
58 |
+
# progress((n_sdxl_steps * high_noise_frac, total_steps), desc="Refining first frame...")
|
59 |
+
# image = refiner(
|
60 |
+
# prompt=prompt,
|
61 |
+
# num_inference_steps=n_sdxl_steps,
|
62 |
+
# denoising_start=high_noise_frac,
|
63 |
+
# image=image,
|
64 |
+
# callback_on_step_end=create_progress_updater(
|
65 |
+
# start=n_sdxl_steps * high_noise_frac,
|
66 |
+
# total=total_steps,
|
67 |
+
# desc="Refining first frame...",
|
68 |
+
# progress=progress,
|
69 |
+
# ),
|
70 |
+
# ).images[0]
|
71 |
+
image = to_tensor(image)
|
72 |
+
progress((n_sdxl_steps, total_steps), desc="Generating video...")
|
73 |
+
frames: list[Image.Image] = pipeline(
|
74 |
+
prompt=prompt,
|
75 |
+
image=image,
|
76 |
+
num_inference_steps=50,
|
77 |
+
negative_prompt=negative_prompt,
|
78 |
+
guidance_scale=9.0,
|
79 |
+
generator=generator,
|
80 |
+
decode_chunk_size=2,
|
81 |
+
num_frames=32,
|
82 |
+
).frames[0]
|
83 |
+
progress((total_steps - 1, total_steps), desc="Finalizing...")
|
84 |
+
frames = [to_tensor(frame.convert("RGB")).mul(255).byte().permute(1, 2, 0) for frame in frames]
|
85 |
+
frames = torch.stack(frames)
|
86 |
+
torchvision.io.write_video("video.mp4", frames, fps=8)
|
87 |
+
return "video.mp4"
|
88 |
+
|
89 |
+
app = gr.Interface(
|
90 |
+
fn=generate,
|
91 |
+
inputs=["text"],
|
92 |
+
outputs=gr.Video()
|
93 |
+
)
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
app.launch()
|
97 |
+
|
requirements.txt
ADDED
Binary file (2.99 kB). View file
|
|
utils.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from gradio import Progress
|
2 |
+
|
3 |
+
def create_progress_updater(start: int, total: int, desc: str, progress: Progress):
|
4 |
+
def updater(pipe, step, timestep, callback_kwargs):
|
5 |
+
progress((step + start, total), desc=desc)
|
6 |
+
return callback_kwargs
|
7 |
+
return updater
|