from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr # Initialize the model and tokenizer model = AutoModelForCausalLM.from_pretrained("anto18671/lumenspark", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("anto18671/lumenspark", trust_remote_code=True) def generate_text(input_text): # Tokenize input text encoded_input = tokenizer(input_text, return_tensors='pt') # Generate text using the model output = model.generate( input_ids=encoded_input["input_ids"], attention_mask=encoded_input["attention_mask"], max_length=100, min_length=20, temperature=0.6, top_k=50, top_p=0.9, repetition_penalty=1.1, do_sample=True ) # Decode the generated text decoded_text = tokenizer.decode(output[0], skip_special_tokens=True) return decoded_text # Set up Gradio interface interface = gr.Interface( fn=generate_text, inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."), outputs="text", title="Text Generator", description="Generate text using the Lumenspark model." ) # Launch the interface interface.launch()