Spaces:
Runtime error
Runtime error
File size: 11,381 Bytes
5a53a51 9148420 1723973 9148420 d535e23 9148420 da41dd8 9148420 d535e23 9148420 d535e23 9148420 d535e23 9148420 9a9456e da41dd8 ae60913 2355e4a da41dd8 5af4728 da41dd8 5af4728 9148420 937f647 9148420 937f647 9148420 937f647 9148420 4d4b3ae 9148420 4d4b3ae 9148420 937f647 9148420 9a9456e 9148420 99dc3e4 9148420 9a9456e da41dd8 5af4728 c38f815 9a9456e 5af4728 99dc3e4 9148420 9a9456e a35ff7f a370087 9148420 c38f815 9148420 5af4728 9148420 5af4728 9a9456e 5af4728 9a9456e 5af4728 9148420 99dc3e4 1723973 5af4728 02d0555 99dc3e4 1723973 99dc3e4 1723973 5af4728 02d0555 99dc3e4 5b734ce 9148420 c38f815 9148420 c38f815 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import os
from PIL import Image
import torch
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.plotting import plot_point_cloud
from point_e.util.pc_to_mesh import marching_cubes_mesh
import skimage.measure
from pyntcloud import PyntCloud
import matplotlib.colors
import plotly.graph_objs as go
import trimesh
import gradio as gr
state = ""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def set_state(s):
print(s)
global state
state = s
def get_state():
return state
set_state('Creating txt2mesh model...')
t2m_name = 'base40M-textvec'
t2m_model = model_from_config(MODEL_CONFIGS[t2m_name], device)
t2m_model.eval()
base_diffusion_t2m = diffusion_from_config(DIFFUSION_CONFIGS[t2m_name])
set_state('Downloading txt2mesh checkpoint...')
t2m_model.load_state_dict(load_checkpoint(t2m_name, device))
def load_img2mesh_model(model_name):
set_state(f'Creating img2mesh model {model_name}...')
i2m_name = model_name
i2m_model = model_from_config(MODEL_CONFIGS[i2m_name], device)
i2m_model.eval()
base_diffusion_i2m = diffusion_from_config(DIFFUSION_CONFIGS[i2m_name])
set_state(f'Downloading img2mesh checkpoint {model_name}...')
i2m_model.load_state_dict(load_checkpoint(i2m_name, device))
return i2m_model, base_diffusion_i2m
img2mesh_model_name = 'base40M' #'base300M' #'base1B'
i2m_model, base_diffusion_i2m = load_img2mesh_model(img2mesh_model_name)
set_state('Creating upsample model...')
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
upsampler_model.eval()
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
set_state('Downloading upsampler checkpoint...')
upsampler_model.load_state_dict(load_checkpoint('upsample', device))
set_state('Creating SDF model...')
sdf_name = 'sdf'
sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device)
sdf_model.eval()
set_state('Loading SDF model...')
sdf_model.load_state_dict(load_checkpoint(sdf_name, device))
stable_diffusion = gr.Blocks.load(name="spaces/runwayml/stable-diffusion-v1-5")
set_state('')
def get_sampler(model_name, txt2obj, guidance_scale):
global img2mesh_model_name
global base_diffusion_i2m
global i2m_model
if model_name != img2mesh_model_name:
img2mesh_model_name = model_name
i2m_model, base_diffusion_i2m = load_img2mesh_model(model_name)
return PointCloudSampler(
device=device,
models=[t2m_model if txt2obj else i2m_model, upsampler_model],
diffusions=[base_diffusion_t2m if txt2obj else base_diffusion_i2m, upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[guidance_scale, 0.0 if txt2obj else guidance_scale],
model_kwargs_key_filter=('texts', '') if txt2obj else ("*",)
)
def generate_txt2img(prompt):
prompt = f"“a 3d rendering of {prompt}, full view, white background"
gallery_dir = stable_diffusion(prompt, fn_index=2)
imgs = [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir) if os.path.splitext(img)[1] == '.jpg']
return imgs[0], gr.update(visible=True)
def generate_3D(input, model_name='base40M', guidance_scale=3.0, grid_size=32):
set_state('Entered generate function...')
if isinstance(input, Image.Image):
input = prepare_img(input)
# if input is a string, it's a text prompt
sampler = get_sampler(model_name, txt2obj=True if isinstance(input, str) else False, guidance_scale=guidance_scale)
# Produce a sample from the model.
set_state('Sampling...')
samples = None
kw_args = dict(texts=[input]) if isinstance(input, str) else dict(images=[input])
for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=kw_args):
samples = x
set_state('Converting to point cloud...')
pc = sampler.output_to_point_clouds(samples)[0]
set_state('Saving point cloud...')
with open("point_cloud.ply", "wb") as f:
pc.write_ply(f)
set_state('Converting to mesh...')
save_ply(pc, 'mesh.ply', grid_size)
set_state('')
return pc_to_plot(pc), ply_to_obj('point_cloud.ply', '3d_model.obj'), gr.update(value=['3d_model.obj', 'mesh.ply', 'point_cloud.ply'], visible=True)
def prepare_img(img):
w, h = img.size
if w > h:
img = img.crop((w - h) / 2, 0, w - (w - h) / 2, h)
else:
img = img.crop((0, (h - w) / 2, w, h - (h - w) / 2))
# resize to 256x256
img = img.resize((256, 256))
return img
def pc_to_plot(pc):
return go.Figure(
data=[
go.Scatter3d(
x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2],
mode='markers',
marker=dict(
size=2,
color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])],
)
)
],
layout=dict(
scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False))
),
)
def ply_to_obj(ply_file, obj_file):
mesh = trimesh.load(ply_file)
mesh.export(obj_file)
return obj_file
def save_ply(pc, file_name, grid_size):
# Produce a mesh (with vertex colors)
mesh = marching_cubes_mesh(
pc=pc,
model=sdf_model,
batch_size=4096,
grid_size=grid_size, # increase to 128 for resolution used in evals
progress=True,
)
# Write the mesh to a PLY file to import into some other program.
with open(file_name, 'wb') as f:
mesh.write_ply(f)
with gr.Blocks() as app:
gr.Markdown("## Point-E text-to-3D Demo")
gr.Markdown("This is a demo for [Point-E: A System for Generating 3D Point Clouds from Complex Prompts](https://arxiv.org/abs/2212.08751) by OpenAI. Check out the [GitHub repo](https://github.com/openai/point-e) for more information.")
gr.HTML("""To skip the queue you can duplicate this space:
<br><a href="https://huggingface.co/spaces/anzorq/point-e_demo?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
<br>Don't forget to change space hardware to <b>GPU</b> after duplicating it.""")
with gr.Row():
with gr.Column():
with gr.Tab("Text to 3D"):
prompt = gr.Textbox(label="Prompt", placeholder="A cactus in a pot")
btn_generate_txt2obj = gr.Button(value="Generate")
with gr.Tab("Image to 3D"):
img = gr.Image(label="Image")
gr.Markdown("Best results with images of 3D objects with no shadows on a white background.")
btn_generate_img2obj = gr.Button(value="Generate")
with gr.Tab("Text to Image to 3D"):
gr.Markdown("Generate an image with Stable Diffusion, then convert it to 3D. Just enter the object you want to generate.")
prompt_sd = gr.Textbox(label="Prompt", placeholder="a 3d rendering of [your prompt], full view, white background")
btn_generate_txt2sd = gr.Button(value="Generate image")
img_sd = gr.Image(label="Image")
btn_generate_sd2obj = gr.Button(value="Convert to 3D", visible=False)
with gr.Accordion("Advanced settings", open=False):
dropdown_models = gr.Dropdown(label="Model", value="base40M", choices=["base40M", "base300M"]) #, "base1B"])
guidance_scale = gr.Slider(label="Guidance scale", value=3.0, minimum=3.0, maximum=10.0, step=0.1)
grid_size = gr.Slider(label="Grid size (for .obj 3D model)", value=32, minimum=16, maximum=128, step=16)
with gr.Column():
plot = gr.Plot(label="Point cloud")
# btn_pc_to_obj = gr.Button(value="Convert to OBJ", visible=False)
model_3d = gr.Model3D(value=None)
file_out = gr.File(label="Files", visible=False)
# state_info = state_info = gr.Textbox(label="State", show_label=False).style(container=False)
# inputs = [dropdown_models, prompt, img, guidance_scale, grid_size]
outputs = [plot, model_3d, file_out]
prompt.submit(generate_3D, inputs=[prompt, dropdown_models, guidance_scale, grid_size], outputs=outputs)
btn_generate_txt2obj.click(generate_3D, inputs=[prompt, dropdown_models, guidance_scale, grid_size], outputs=outputs)
btn_generate_img2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs)
prompt_sd.submit(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj])
btn_generate_txt2sd.click(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj])
btn_generate_sd2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs)
# btn_pc_to_obj.click(ply_to_obj, inputs=plot, outputs=[model_3d, file_out])
gr.Examples(
examples=[
["a cactus in a pot"],
["a round table with floral tablecloth"],
["a red kettle"],
["a vase with flowers"],
["a sports car"],
["a man"],
],
inputs=[prompt],
outputs=outputs,
fn=generate_3D,
cache_examples=False
)
gr.Examples(
examples=[
["images/corgi.png"],
["images/cube_stack.jpg"],
["images/chair.png"],
],
inputs=[img],
outputs=outputs,
fn=generate_3D,
cache_examples=False
)
# app.load(get_state, inputs=[], outputs=state_info, every=0.5, show_progress=False)
gr.HTML("""
<br><br>
<div style="border-top: 1px solid #303030;">
<br>
<p>Space by:<br>
<a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br>
<a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br>
<a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 30px !important;width: 102px !important;" ></a><br><br>
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.point-e_demo" alt="visitors"></p>
</div>
""")
app.queue(max_size=250, concurrency_count=6).launch()
|