Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
~ app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,50 @@
|
|
1 |
-
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
11 |
|
12 |
-
|
13 |
-
inputs = tokenizer(text, return_tensors="pt")
|
14 |
|
15 |
-
|
16 |
-
**inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=4, num_return_sequences=4
|
17 |
-
)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
iface = gr.Interface(fn=translate, inputs="text", outputs=output)
|
27 |
-
iface.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
|
3 |
+
# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
+
|
5 |
+
# model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K"
|
6 |
+
# src_lang="ru"
|
7 |
+
# tgt_lang="zu"
|
8 |
+
|
9 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_path, src_lang=src_lang)
|
10 |
+
# model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
11 |
+
|
12 |
+
# def translate(text):
|
13 |
+
# inputs = tokenizer(text, return_tensors="pt")
|
14 |
|
15 |
+
# translated_tokens = model.generate(
|
16 |
+
# **inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=4, num_return_sequences=4
|
17 |
+
# )
|
18 |
+
|
19 |
+
# translations = []
|
20 |
+
# for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True):
|
21 |
+
# translations.append(translation)
|
22 |
+
|
23 |
+
# return translations
|
24 |
+
|
25 |
+
# output = gr.outputs.Textbox()
|
26 |
+
# iface = gr.Interface(fn=translate, inputs="text", outputs=output)
|
27 |
+
# iface.launch()
|
28 |
+
|
29 |
+
import gradio as gr
|
30 |
|
31 |
+
title = "Русско-черкесский переводчик"
|
32 |
+
description = """
|
33 |
+
Demo of a Russian-Circassian (Kabardian dialect) translator.
|
34 |
|
35 |
+
The translator is based on a machine learning model that has been trained on 45,000 Russian-Circassian sentence pairs.
|
|
|
36 |
|
37 |
+
It is based on Facebook's <a href="https://about.fb.com/news/2020/10/first-multilingual-machine-translation-model/">M2M-100 model</a>, and can also translate from 100 other languages to Circassian (English, French, Spanish, etc.), but less accurately.
|
|
|
38 |
|
39 |
+
The data corpus is constantly being expanded, and we need help in finding sentence sources, OCR, data cleaning, etc.
|
|
|
|
|
40 |
|
41 |
+
If you are interested in helping out with this project, please contact me at the link below.
|
42 |
+
"""
|
43 |
+
article = """<p style='text-align: center'><a href='https://arxiv.org/abs/1806.00187'>Scaling Neural Machine Translation</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>"""
|
44 |
|
45 |
+
examples = [
|
46 |
+
["Hello world!"],
|
47 |
+
["PyTorch Hub is a pre-trained model repository designed to facilitate research reproducibility."]
|
48 |
+
]
|
49 |
|
50 |
+
gr.Interface.load("models/anzorq/m2m100_418M_ft_ru-kbd_44K", title=title, description=description, article=article, examples=examples).launch()
|
|
|
|