apapiu's picture
Update app.py
eeba8b2 verified
raw
history blame
3.14 kB
import gradio as gr
from PIL import Image
import requests
from tld.denoiser import Denoiser
from tld.diffusion import DiffusionGenerator
from diffusers import AutoencoderKL, AutoencoderTiny
from tqdm import tqdm
import clip
import torch
import numpy as np
import torchvision.utils as vutils
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, TensorDataset
from PIL import Image
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
to_pil = transforms.ToPILImage()
def download_file(url, filename):
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(filename, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
@torch.no_grad()
def encode_text(label, model):
text_tokens = clip.tokenize(label, truncate=True).to(device)
text_encoding = model.encode_text(text_tokens)
return text_encoding.cpu()
def generate_image_from_text(prompt, class_guidance=6, seed=11, num_imgs=1, img_size = 32):
n_iter = 15
nrow = int(np.sqrt(num_imgs))
cur_prompts = [prompt]*num_imgs
labels = encode_text(cur_prompts, clip_model)
out, out_latent = diffuser.generate(labels=labels,
num_imgs=num_imgs,
class_guidance=class_guidance,
seed=seed,
n_iter=n_iter,
exponent=1,
scale_factor=8,
sharp_f=0,
bright_f=0
)
out = to_pil((vutils.make_grid((out+1)/2, nrow=nrow, padding=4)).float().clip(0, 1))
out.save(f'{prompt}_cfg:{class_guidance}_seed:{seed}.png')
print("Images Generated and Saved. They will shortly output below.")
return out
###config:
vae_scale_factor = 8
img_size = 32
model_dtype = torch.float32
file_url = "https://huggingface.co/apapiu/small_ldt/resolve/main/state_dict_378000.pth"
local_filename = "state_dict_378000.pth"
download_file(file_url, local_filename)
denoiser = Denoiser(image_size=32, noise_embed_dims=256, patch_size=2,
embed_dim=768, dropout=0, n_layers=12)
state_dict = torch.load('state_dict_378000.pth', map_location=torch.device('cpu'))
denoiser = denoiser.to(model_dtype)
denoiser.load_state_dict(state_dict)
denoiser = denoiser.to(device)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix",
torch_dtype=model_dtype).to(device)
clip_model, preprocess = clip.load("ViT-L/14")
clip_model = clip_model.to(device)
diffuser = DiffusionGenerator(denoiser, vae, device, model_dtype)
# Define the Gradio interface
iface = gr.Interface(
fn=generate_image_from_text, # The function to generate the image
inputs=["text", "slider"],
outputs="image",
title="Text-to-Image Generator",
description="Enter a text prompt to generate an image."
)
# Launch the app
iface.launch()