|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import spaces |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
@spaces.GPU() |
|
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed) |
|
image = pipe( |
|
prompt = prompt, |
|
width = width, |
|
height = height, |
|
num_inference_steps = num_inference_steps, |
|
generator = generator, |
|
guidance_scale=0.0 |
|
).images[0] |
|
return image, seed |
|
|
|
examples = [ |
|
"Create a new logo for a tech startup", |
|
"Design an engaging Instagram post for a fashion brand", |
|
"Create a new character for a social media campaign", |
|
"Generate a marketing advertisement for a new product launch", |
|
"Design a social media banner for a charity event", |
|
"Create a new branding concept for a luxury hotel", |
|
"Design a promotional video thumbnail for a movie premiere", |
|
"Generate a marketing campaign for a sustainable lifestyle brand" |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 800px; |
|
padding: 20px; |
|
border-radius: 10px; |
|
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1); |
|
} |
|
|
|
#title { |
|
text-align: center; |
|
font-size: 32px; |
|
font-weight: bold; |
|
margin-bottom: 20px; |
|
} |
|
|
|
#prompt { |
|
margin-bottom: 20px; |
|
} |
|
|
|
#result { |
|
margin-bottom: 20px; |
|
} |
|
|
|
#advanced-settings { |
|
margin-bottom: 20px; |
|
} |
|
|
|
#footer { |
|
text-align: center; |
|
font-size: 14px; |
|
color: #888; |
|
} |
|
""" |
|
|
|
footer = """ |
|
<div id="footer"> |
|
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> | |
|
<a href="https://github.com/arad1367" target="_blank">GitHub</a> | |
|
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> | |
|
<a href="https://huggingface.co/black-forest-labs/FLUX.1-schnell" target="_blank">black-forest-labs/FLUX.1-schnell</a> |
|
<br> |
|
Made with π by Pejman Ebrahimi |
|
</div> |
|
""" |
|
|
|
with gr.Blocks(css=css, theme='gradio/soft') as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(""" |
|
# FLUX.1 Schnell Marketing Assistant |
|
|
|
This app uses the FLUX.1 Schnell model to generate high-quality images based on your prompt. Use it to create new logos, social media content, marketing advertisements, and more. |
|
""", elem_id="title") |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
elem_id="prompt" |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False, elem_id="result") |
|
|
|
with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=4, |
|
) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
fn = infer, |
|
inputs = [prompt], |
|
outputs = [result, seed], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.HTML(footer) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn = infer, |
|
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], |
|
outputs = [result, seed] |
|
) |
|
|
|
demo.launch() |
|
|