tylerlastovich's picture
Update app.py
5c16ef8
from pathlib import Path
from num2words import num2words
import numpy as np
import os
import random
import re
import torch
import json
from shapely.geometry.polygon import Polygon
from shapely.affinity import scale
from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont, ImageColor
os.system('pip3 install gradio==2.7.5')
import gradio as gr
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
finetuned = AutoModelForCausalLM.from_pretrained('model')
tokenizer = AutoTokenizer.from_pretrained('gpt2')
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(device)
finetuned = finetuned.to(device)
# Utility functions
def containsNumber(value):
for character in value:
if character.isdigit():
return True
return False
def creativity(intensity):
if(intensity == 'Low'):
top_p = 0.95
top_k = 10
elif(intensity == 'Medium'):
top_p = 0.9
top_k = 50
if(intensity == 'High'):
top_p = 0.85
top_k = 100
return top_p, top_k
housegan_labels = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "missing": 5, "closet": 6,
"balcony": 7, "corridor": 8, "dining_room": 9, "laundry_room": 10}
architext_colors = [[0, 0, 0], [249, 222, 182], [195, 209, 217], [250, 120, 128], [126, 202, 234], [190, 0, 198], [255, 255, 255],
[6, 53, 17], [17, 33, 58], [132, 151, 246], [197, 203, 159], [6, 53, 17],]
regex = re.compile(".*?\((.*?)\)")
def draw_polygons(polygons, colors, im_size=(512, 512), b_color="white", fpath=None):
image = Image.new("RGBA", im_size, color="white")
draw = ImageDraw.Draw(image)
for poly, color, in zip(polygons, colors):
#get initial polygon coordinates
xy = poly.exterior.xy
coords = np.dstack((xy[1], xy[0])).flatten()
# draw it on canvas, with the appropriate colors
draw.polygon(list(coords), fill=(0, 0, 0))
#get inner polygon coordinates
small_poly = poly.buffer(-1, resolution=32, cap_style=2, join_style=2, mitre_limit=5.0)
if small_poly.geom_type == 'MultiPolygon':
mycoordslist = [list(x.exterior.coords) for x in small_poly]
for coord in mycoordslist:
coords = np.dstack((np.array(coord)[:,1], np.array(coord)[:, 0])).flatten()
draw.polygon(list(coords), fill=tuple(color))
elif poly.geom_type == 'Polygon':
#get inner polygon coordinates
xy2 = small_poly.exterior.xy
coords2 = np.dstack((xy2[1], xy2[0])).flatten()
# draw it on canvas, with the appropriate colors
draw.polygon(list(coords2), fill=tuple(color))
image = image.transpose(Image.FLIP_TOP_BOTTOM)
if(fpath):
image.save(fpath, quality=100, subsampling=0)
return draw, image
def prompt_to_layout(user_prompt, intensity, fpath=None):
if(containsNumber(user_prompt) == True):
spaced_prompt = user_prompt.split(' ')
new_prompt = ' '.join([word if word.isdigit() == False else num2words(int(word)).lower() for word in spaced_prompt])
model_prompt = '[User prompt] {} [Layout]'.format(new_prompt)
top_p, top_k = creativity(intensity)
model_prompt = '[User prompt] {} [Layout]'.format(user_prompt)
input_ids = tokenizer(model_prompt, return_tensors='pt').to(device)
output = finetuned.generate(**input_ids, do_sample=True, top_p=top_p, top_k=top_k,
eos_token_id=50256, max_length=400)
output = tokenizer.batch_decode(output, skip_special_tokens=True)
layout = output[0].split('[User prompt]')[1].split('[Layout] ')[1].split(', ')
spaces = [txt.split(':')[0] for txt in layout]
coords = [txt.split(':')[1].rstrip() for txt in layout]
coordinates = [re.findall(regex, coord) for coord in coords]
num_coords = []
for coord in coordinates:
temp = []
for xy in coord:
numbers = xy.split(',')
temp.append(tuple([int(num)/14.2 for num in numbers]))
num_coords.append(temp)
new_spaces = []
for i, v in enumerate(spaces):
totalcount = spaces.count(v)
count = spaces[:i].count(v)
new_spaces.append(v + str(count + 1) if totalcount > 1 else v)
out_dict = dict(zip(new_spaces, num_coords))
out_dict = json.dumps(out_dict)
polygons = []
for coord in coordinates:
polygons.append([point.split(',') for point in coord])
geom = []
for poly in polygons:
scaled_poly = scale(Polygon(np.array(poly, dtype=int)), xfact=2, yfact=2, origin=(0,0))
geom.append(scaled_poly)
colors = [architext_colors[housegan_labels[space]] for space in spaces]
_, im = draw_polygons(geom, colors, fpath=fpath)
html = '<img class="labels" src="images/labels.png" />'
legend = Image.open("labels.png")
imgs_comb = np.vstack([im, legend])
imgs_comb = Image.fromarray(imgs_comb)
return imgs_comb, out_dict
# Gradio App
custom_css="""
@import url("https://use.typekit.net/nid3pfr.css");
.gradio_wrapper .gradio_bg[is_embedded=false] {
min-height: 80%;
}
.gradio_wrapper .gradio_bg[is_embedded=false] .gradio_page {
display: flex;
width: 100vw;
min-height: 50vh;
flex-direction: column;
justify-content: center;
align-items: center;
margin: 0px;
max-width: 100vw;
background: #FFFFFF;
}
.gradio_wrapper .gradio_bg[is_embedded=false] .gradio_page .content {
padding: 0px;
margin: 0px;
}
.gradio_interface {
width: 100vw;
max-width: 1500px;
}
.gradio_interface .panel:nth-child(2) .component:nth-child(3) {
display:none
}
.gradio_wrapper .gradio_bg[theme=default] .panel_buttons {
justify-content: flex-end;
}
.gradio_wrapper .gradio_bg[theme=default] .panel_button {
flex: 0 0 0;
min-width: 150px;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .panel_button.submit {
background: #11213A;
border-radius: 5px;
color: #FFFFFF;
text-transform: uppercase;
min-width: 150px;
height: 4em;
letter-spacing: 0.15em;
flex: 0 0 0;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .panel_button.submit:hover {
background: #000000;
}
.input_text:focus {
border-color: #FA7880;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_text input,
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_text textarea {
font: 200 45px garamond-premier-pro-display, serif;
line-height: 110%;
color: #11213A;
border-radius: 5px;
padding: 15px;
border: none;
background: #F2F4F4;
}
.input_text textarea:focus-visible {
outline: none;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_radio .radio_item.selected {
background-color: #11213A;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_radio .selected .radio_circle {
border-color: #4365c4;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .output_image {
width: 100%;
height: 40vw;
max-height: 630px;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .output_image .image_preview_holder {
background: transparent;
}
.panel:nth-child(1) {
margin-left: 50px;
margin-right: 50px;
margin-bottom: 80px;
max-width: 750px;
}
.panel {
background: transparent;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .component_set {
background: transparent;
box-shadow: none;
}
.panel:nth-child(2) .gradio_wrapper .gradio_bg[theme=default] .gradio_interface .panel_header {
display: none;
}
.gradio_wrapper .gradio_bg[is_embedded=false] .gradio_page .footer {
transform: scale(0.75);
filter: grayscale(1);
}
.labels {
height: 20px;
width: auto;
}
@media (max-width: 1000px){
.panel:nth-child(1) {
margin-left: 0px;
margin-right: 0px;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .output_image {
height: auto;
}
}
"""
creative_slider = gr.inputs.Radio(["Low", "Medium", "High"], default="Low", label='Creativity')
textbox = gr.inputs.Textbox(placeholder='An apartment with two bedrooms and one bathroom', lines="3",
label="DESCRIBE YOUR IDEAL APARTMENT")
generated = gr.outputs.Image(label='Generated Layout')
layout = gr.outputs.Textbox(label='Layout Coordinates')
iface = gr.Interface(fn=prompt_to_layout, inputs=[textbox, creative_slider],
outputs=[generated, layout],
css=custom_css,
theme="default",
allow_flagging='never',
allow_screenshot=False,
thumbnail="thumbnail_gradio.PNG")
iface.launch(enable_queue=True, share=True)