THEODOROS commited on
Commit
d51b5dd
1 Parent(s): 773b29c

Add application and pretraied model

Browse files
app.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ import numpy as np
3
+ import random
4
+ import re
5
+ import textwrap
6
+
7
+ from shapely.geometry.polygon import Polygon
8
+ import aggdraw
9
+ from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont, ImageColor
10
+
11
+ import gradio as gr
12
+
13
+ from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
14
+
15
+ finetuned = AutoModelForCausalLM.from_pretrained('model')
16
+ tokenizer = AutoTokenizer.from_pretrained('gpt2')
17
+
18
+ # Utility functions
19
+
20
+ housegan_labels = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "missing": 5, "closet": 6,
21
+ "balcony": 7, "corridor": 8, "dining_room": 9, "laundry_room": 10}
22
+
23
+ housegan_colors = [[0, 0, 0], [197, 203, 159], [169, 89, 142], [0, 132, 66], [190, 0, 198], [255, 255, 255],
24
+ [6, 53, 17], [2, 54, 192], [132, 151, 246], [197, 203, 159], [6, 53, 17],]
25
+
26
+ regex = re.compile(".*?\((.*?)\)")
27
+
28
+ def draw_polygons(polygons, colors, im_size=(256, 256), b_color="white", fpath=None):
29
+
30
+ image = Image.new("RGB", im_size, color="white")
31
+ draw = aggdraw.Draw(image)
32
+
33
+ for poly, color, in zip(polygons, colors):
34
+ #get initial polygon coordinates
35
+ xy = poly.exterior.xy
36
+ coords = np.dstack((xy[1], xy[0])).flatten()
37
+ # draw it on canvas, with the appropriate colors
38
+ brush = aggdraw.Brush((0, 0, 0), opacity=255)
39
+ draw.polygon(coords, brush)
40
+
41
+
42
+ #get inner polygon coordinates
43
+ small_poly = poly.buffer(-1, resolution=32, cap_style=2, join_style=2, mitre_limit=5.0)
44
+ if small_poly.geom_type == 'MultiPolygon':
45
+ mycoordslist = [list(x.exterior.coords) for x in small_poly]
46
+ for coord in mycoordslist:
47
+ coords = np.dstack((np.array(coord)[:,1], np.array(coord)[:, 0])).flatten()
48
+ brush2 = aggdraw.Brush((0, 0, 0), opacity=255)
49
+ draw.polygon(coords, brush2)
50
+ elif poly.geom_type == 'Polygon':
51
+ #get inner polygon coordinates
52
+ xy2 = small_poly.exterior.xy
53
+ coords2 = np.dstack((xy2[1], xy2[0])).flatten()
54
+ # draw it on canvas, with the appropriate colors
55
+ brush2 = aggdraw.Brush((color[0], color[1], color[2]), opacity=255)
56
+ draw.polygon(coords2, brush2)
57
+
58
+ image = Image.frombytes("RGB", (256,256), draw.tobytes()).transpose(Image.FLIP_TOP_BOTTOM)
59
+
60
+ if(fpath):
61
+ image.save(fpath, quality=100, subsampling=0)
62
+
63
+ return draw, image
64
+
65
+ def prompt_to_layout(user_prompt, fpath=None):
66
+
67
+ model_prompt = '[User prompt] {} [Layout]'.format(user_prompt)
68
+ input_ids = tokenizer(model_prompt, return_tensors='pt')
69
+ output = finetuned.generate(**input_ids, do_sample=True, top_p=0.94, top_k=100, max_length=300)
70
+ output = tokenizer.batch_decode(output, skip_special_tokens=True)
71
+ output = output[0].split('[Layout]')[1].split(', ')
72
+ spaces = [txt.split(':')[0] for txt in output]
73
+
74
+ coordinates = [txt.split(':')[1] for txt in output]
75
+ coordinates = [re.findall(regex, coord) for coord in coordinates]
76
+
77
+ polygons = []
78
+ for coord in coordinates:
79
+ polygons.append([point.split(',') for point in coord])
80
+
81
+ geom = []
82
+ for poly in polygons:
83
+ geom.append(Polygon(np.array(poly, dtype=int)))
84
+
85
+ colors = [housegan_colors[housegan_labels[space]] for space in spaces]
86
+
87
+ _, im = draw_polygons(geom, colors, fpath=fpath)
88
+
89
+ legend = Image.open(r"C:\\Users\\user\\Desktop\\legend3.png")
90
+
91
+ im = np.array(im)
92
+ im[:40, :] = np.array(legend)
93
+ im = Image.fromarray(im)
94
+
95
+ return im, output
96
+
97
+ def mut_txt2layout(mut_output):
98
+ output = mut_output[0].split('[Layout]')[1].split(', ')
99
+ spaces = [txt.split(':')[0].strip(' ') for txt in output]
100
+ coordinates = [txt.split(':')[1] for txt in output]
101
+ coordinates = [re.findall(regex, coord) for coord in coordinates]
102
+
103
+ polygons = []
104
+ for coord in coordinates:
105
+ polygons.append([point.split(',') for point in coord])
106
+
107
+ geom = []
108
+ for poly in polygons:
109
+ geom.append(Polygon(np.array(poly, dtype=int)))
110
+
111
+ colors = [housegan_colors[housegan_labels[space]] for space in spaces]
112
+ _, im = draw_polygons(geom, colors, fpath=None)
113
+
114
+ legend = Image.open(r"C:\\Users\\user\\Desktop\\legend3.png")
115
+
116
+ im = np.array(im)
117
+ im[:40, :] = np.array(legend)
118
+ im = Image.fromarray(im)
119
+
120
+ return im
121
+
122
+ def prompt_with_mutation(user_prompt, fpath=None):
123
+
124
+ #Create initial layout based on prompt
125
+ im, output = prompt_to_layout(user_prompt)
126
+
127
+ #Create mutated layout based on initial
128
+ cut_off = np.random.randint(1, 3, size=1)[0]
129
+ cut_off = min(cut_off, len(output)-1)
130
+ new_prompt = model_prompt + ', '.join(output[:cut_off]) + ', '
131
+ input_ids = tokenizer(new_prompt, return_tensors='pt')
132
+ mut_output = finetuned.generate(**input_ids, do_sample=True, top_p=0.94, top_k=100, max_length=200)
133
+ mut_output = tokenizer.batch_decode(mut_output, skip_special_tokens=True)
134
+ mut_im = mut_txt2layout(mut_output)
135
+
136
+ combined = merge_images(im, mut_im)
137
+
138
+ return im, mut_im
139
+
140
+ # Gradio App
141
+
142
+ def gen_and_mutate(user_prompt, mutate=False):
143
+ if(mutate):
144
+ im, mut_im = None, None
145
+ while (mut_im is None):
146
+ im, mut_im = prompt_with_mutation(user_prompt)
147
+ else:
148
+ mut_im=Image.open(r"C:\\Users\\user\\Desktop\\empty.png")
149
+ im, _ = prompt_to_layout(user_prompt)
150
+
151
+ return im, mut_im
152
+
153
+ checkbox = gr.inputs.Checkbox(label='Mutate')
154
+ textbox = gr.inputs.Textbox(placeholder='Enter a prompt describing a layout, see below for instructions')
155
+
156
+ generated = gr.outputs.Image(label='Generated Layout')
157
+ mutated = gr.outputs.Image(label='Mutated Layout')
158
+
159
+ iface = gr.Interface(fn=gen_and_mutate, inputs=[textbox, checkbox], outputs=[generated, mutated],
160
+ thumbnail=r"E:\Datasets\MyFloorplans\text2text\thumbnail_gradio.PNG",
161
+ description='Demo of Semantic Generation of Residential Layouts \n',
162
+ article='''<div>
163
+ <p> This app allows users the use of natural language prompts for appartment layout generation, using a variety of semantic information:</p>
164
+ <ul>
165
+ <li> <strong>typology</strong>: "a bedroom with two bedrooms and two bathrooms"</li>
166
+ <li> <strong>enumeration</strong>: "a house with five rooms"</li>
167
+ <li> <strong>adjacency</strong>: "the kitchen is adjacent to a bedroom", "the living room is not adjacent to the bathroom"</li>
168
+ <li> <strong>location</strong>: "a house with a bedroom in the north east side"</li>
169
+ </ul>
170
+ <p>You can also create a mutation of the generated layout by enabling the 'Mutate' option.</p>
171
+ <p> Made by: <a href='https://www.linkedin.com/in/theodorosgalanos/'>Theodoros </a> <a href='https://twitter.com/TheodoreGalanos'> Galanos</a> and <a href='https://twitter.com/tylerlastovich'>Tyler Lastovich</a> </p>
172
+ </div>''')
173
+
174
+ iface.launch()
175
+
176
+
177
+
178
+
179
+
180
+
181
+
182
+
183
+
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
+
192
+
193
+
194
+
195
+
196
+
197
+
198
+
199
+
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+
208
+
model/config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "EleutherAI/gpt-neo-125M",
3
+ "activation_function": "gelu_new",
4
+ "architectures": [
5
+ "GPTNeoForCausalLM"
6
+ ],
7
+ "attention_dropout": 0,
8
+ "attention_layers": [
9
+ "global",
10
+ "local",
11
+ "global",
12
+ "local",
13
+ "global",
14
+ "local",
15
+ "global",
16
+ "local",
17
+ "global",
18
+ "local",
19
+ "global",
20
+ "local"
21
+ ],
22
+ "attention_types": [
23
+ [
24
+ [
25
+ "global",
26
+ "local"
27
+ ],
28
+ 6
29
+ ]
30
+ ],
31
+ "bos_token_id": 50256,
32
+ "embed_dropout": 0,
33
+ "eos_token_id": 50256,
34
+ "gradient_checkpointing": false,
35
+ "hidden_size": 768,
36
+ "initializer_range": 0.02,
37
+ "intermediate_size": null,
38
+ "layer_norm_epsilon": 1e-05,
39
+ "max_position_embeddings": 2048,
40
+ "model_type": "gpt_neo",
41
+ "num_heads": 12,
42
+ "num_layers": 12,
43
+ "resid_dropout": 0,
44
+ "summary_activation": null,
45
+ "summary_first_dropout": 0.1,
46
+ "summary_proj_to_labels": true,
47
+ "summary_type": "cls_index",
48
+ "summary_use_proj": true,
49
+ "transformers_version": "4.8.1",
50
+ "use_cache": true,
51
+ "vocab_size": 50257,
52
+ "window_size": 256
53
+ }
model/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df35819ca3ee7d6667b734dcd2a92c2ab539a72b399f8fb76cdbd89ad8a57df5
3
+ size 526021937
model/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6081874f960bdd9087fced5865fc0df1593c2ffcde9c679c276725789565994
3
+ size 15691
model/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4175248537ab98940ac983894a7f290b125e0bdf7b03a2c00c7c4855d080b5f
3
+ size 623
model/trainer_state.json ADDED
@@ -0,0 +1,1196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "global_step": 97022,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 1.25e-06,
13
+ "loss": 0.3381,
14
+ "step": 500
15
+ },
16
+ {
17
+ "epoch": 0.02,
18
+ "learning_rate": 2.5e-06,
19
+ "loss": 0.1717,
20
+ "step": 1000
21
+ },
22
+ {
23
+ "epoch": 0.03,
24
+ "learning_rate": 3.7500000000000005e-06,
25
+ "loss": 0.1167,
26
+ "step": 1500
27
+ },
28
+ {
29
+ "epoch": 0.04,
30
+ "learning_rate": 5e-06,
31
+ "loss": 0.0962,
32
+ "step": 2000
33
+ },
34
+ {
35
+ "epoch": 0.05,
36
+ "learning_rate": 4.9896073662987675e-06,
37
+ "loss": 0.0848,
38
+ "step": 2500
39
+ },
40
+ {
41
+ "epoch": 0.06,
42
+ "learning_rate": 4.979214732597535e-06,
43
+ "loss": 0.0796,
44
+ "step": 3000
45
+ },
46
+ {
47
+ "epoch": 0.07,
48
+ "learning_rate": 4.968822098896302e-06,
49
+ "loss": 0.0758,
50
+ "step": 3500
51
+ },
52
+ {
53
+ "epoch": 0.08,
54
+ "learning_rate": 4.95842946519507e-06,
55
+ "loss": 0.0732,
56
+ "step": 4000
57
+ },
58
+ {
59
+ "epoch": 0.09,
60
+ "learning_rate": 4.948036831493837e-06,
61
+ "loss": 0.071,
62
+ "step": 4500
63
+ },
64
+ {
65
+ "epoch": 0.1,
66
+ "learning_rate": 4.937644197792605e-06,
67
+ "loss": 0.0697,
68
+ "step": 5000
69
+ },
70
+ {
71
+ "epoch": 0.11,
72
+ "learning_rate": 4.927251564091372e-06,
73
+ "loss": 0.0681,
74
+ "step": 5500
75
+ },
76
+ {
77
+ "epoch": 0.12,
78
+ "learning_rate": 4.91685893039014e-06,
79
+ "loss": 0.0678,
80
+ "step": 6000
81
+ },
82
+ {
83
+ "epoch": 0.13,
84
+ "learning_rate": 4.906466296688907e-06,
85
+ "loss": 0.0656,
86
+ "step": 6500
87
+ },
88
+ {
89
+ "epoch": 0.14,
90
+ "learning_rate": 4.896073662987675e-06,
91
+ "loss": 0.0651,
92
+ "step": 7000
93
+ },
94
+ {
95
+ "epoch": 0.15,
96
+ "learning_rate": 4.885681029286442e-06,
97
+ "loss": 0.0644,
98
+ "step": 7500
99
+ },
100
+ {
101
+ "epoch": 0.16,
102
+ "learning_rate": 4.87528839558521e-06,
103
+ "loss": 0.0638,
104
+ "step": 8000
105
+ },
106
+ {
107
+ "epoch": 0.18,
108
+ "learning_rate": 4.864895761883977e-06,
109
+ "loss": 0.0627,
110
+ "step": 8500
111
+ },
112
+ {
113
+ "epoch": 0.19,
114
+ "learning_rate": 4.854503128182744e-06,
115
+ "loss": 0.0622,
116
+ "step": 9000
117
+ },
118
+ {
119
+ "epoch": 0.2,
120
+ "learning_rate": 4.844110494481512e-06,
121
+ "loss": 0.0615,
122
+ "step": 9500
123
+ },
124
+ {
125
+ "epoch": 0.21,
126
+ "learning_rate": 4.833717860780279e-06,
127
+ "loss": 0.061,
128
+ "step": 10000
129
+ },
130
+ {
131
+ "epoch": 0.22,
132
+ "learning_rate": 4.823325227079046e-06,
133
+ "loss": 0.0607,
134
+ "step": 10500
135
+ },
136
+ {
137
+ "epoch": 0.23,
138
+ "learning_rate": 4.812932593377814e-06,
139
+ "loss": 0.0603,
140
+ "step": 11000
141
+ },
142
+ {
143
+ "epoch": 0.24,
144
+ "learning_rate": 4.802539959676581e-06,
145
+ "loss": 0.0597,
146
+ "step": 11500
147
+ },
148
+ {
149
+ "epoch": 0.25,
150
+ "learning_rate": 4.792147325975349e-06,
151
+ "loss": 0.0593,
152
+ "step": 12000
153
+ },
154
+ {
155
+ "epoch": 0.26,
156
+ "learning_rate": 4.781754692274117e-06,
157
+ "loss": 0.0588,
158
+ "step": 12500
159
+ },
160
+ {
161
+ "epoch": 0.27,
162
+ "learning_rate": 4.771362058572884e-06,
163
+ "loss": 0.0587,
164
+ "step": 13000
165
+ },
166
+ {
167
+ "epoch": 0.28,
168
+ "learning_rate": 4.760969424871652e-06,
169
+ "loss": 0.058,
170
+ "step": 13500
171
+ },
172
+ {
173
+ "epoch": 0.29,
174
+ "learning_rate": 4.750576791170419e-06,
175
+ "loss": 0.0578,
176
+ "step": 14000
177
+ },
178
+ {
179
+ "epoch": 0.3,
180
+ "learning_rate": 4.740184157469187e-06,
181
+ "loss": 0.0574,
182
+ "step": 14500
183
+ },
184
+ {
185
+ "epoch": 0.31,
186
+ "learning_rate": 4.729791523767954e-06,
187
+ "loss": 0.0572,
188
+ "step": 15000
189
+ },
190
+ {
191
+ "epoch": 0.32,
192
+ "learning_rate": 4.719398890066721e-06,
193
+ "loss": 0.0566,
194
+ "step": 15500
195
+ },
196
+ {
197
+ "epoch": 0.33,
198
+ "learning_rate": 4.709006256365489e-06,
199
+ "loss": 0.0566,
200
+ "step": 16000
201
+ },
202
+ {
203
+ "epoch": 0.34,
204
+ "learning_rate": 4.698613622664256e-06,
205
+ "loss": 0.0562,
206
+ "step": 16500
207
+ },
208
+ {
209
+ "epoch": 0.35,
210
+ "learning_rate": 4.688220988963023e-06,
211
+ "loss": 0.0555,
212
+ "step": 17000
213
+ },
214
+ {
215
+ "epoch": 0.36,
216
+ "learning_rate": 4.677828355261791e-06,
217
+ "loss": 0.0554,
218
+ "step": 17500
219
+ },
220
+ {
221
+ "epoch": 0.37,
222
+ "learning_rate": 4.667435721560558e-06,
223
+ "loss": 0.0559,
224
+ "step": 18000
225
+ },
226
+ {
227
+ "epoch": 0.38,
228
+ "learning_rate": 4.657043087859326e-06,
229
+ "loss": 0.0553,
230
+ "step": 18500
231
+ },
232
+ {
233
+ "epoch": 0.39,
234
+ "learning_rate": 4.646650454158093e-06,
235
+ "loss": 0.0548,
236
+ "step": 19000
237
+ },
238
+ {
239
+ "epoch": 0.4,
240
+ "learning_rate": 4.636257820456861e-06,
241
+ "loss": 0.0548,
242
+ "step": 19500
243
+ },
244
+ {
245
+ "epoch": 0.41,
246
+ "learning_rate": 4.6258651867556285e-06,
247
+ "loss": 0.0544,
248
+ "step": 20000
249
+ },
250
+ {
251
+ "epoch": 0.42,
252
+ "learning_rate": 4.6154725530543956e-06,
253
+ "loss": 0.0542,
254
+ "step": 20500
255
+ },
256
+ {
257
+ "epoch": 0.43,
258
+ "learning_rate": 4.6050799193531635e-06,
259
+ "loss": 0.0542,
260
+ "step": 21000
261
+ },
262
+ {
263
+ "epoch": 0.44,
264
+ "learning_rate": 4.5946872856519305e-06,
265
+ "loss": 0.0539,
266
+ "step": 21500
267
+ },
268
+ {
269
+ "epoch": 0.45,
270
+ "learning_rate": 4.5842946519506976e-06,
271
+ "loss": 0.0538,
272
+ "step": 22000
273
+ },
274
+ {
275
+ "epoch": 0.46,
276
+ "learning_rate": 4.5739020182494655e-06,
277
+ "loss": 0.0535,
278
+ "step": 22500
279
+ },
280
+ {
281
+ "epoch": 0.47,
282
+ "learning_rate": 4.5635093845482325e-06,
283
+ "loss": 0.0534,
284
+ "step": 23000
285
+ },
286
+ {
287
+ "epoch": 0.48,
288
+ "learning_rate": 4.5531167508469996e-06,
289
+ "loss": 0.0535,
290
+ "step": 23500
291
+ },
292
+ {
293
+ "epoch": 0.49,
294
+ "learning_rate": 4.5427241171457675e-06,
295
+ "loss": 0.0533,
296
+ "step": 24000
297
+ },
298
+ {
299
+ "epoch": 0.51,
300
+ "learning_rate": 4.5323314834445345e-06,
301
+ "loss": 0.053,
302
+ "step": 24500
303
+ },
304
+ {
305
+ "epoch": 0.52,
306
+ "learning_rate": 4.521938849743302e-06,
307
+ "loss": 0.0529,
308
+ "step": 25000
309
+ },
310
+ {
311
+ "epoch": 0.53,
312
+ "learning_rate": 4.5115462160420694e-06,
313
+ "loss": 0.0527,
314
+ "step": 25500
315
+ },
316
+ {
317
+ "epoch": 0.54,
318
+ "learning_rate": 4.501153582340837e-06,
319
+ "loss": 0.0524,
320
+ "step": 26000
321
+ },
322
+ {
323
+ "epoch": 0.55,
324
+ "learning_rate": 4.490760948639604e-06,
325
+ "loss": 0.052,
326
+ "step": 26500
327
+ },
328
+ {
329
+ "epoch": 0.56,
330
+ "learning_rate": 4.480368314938372e-06,
331
+ "loss": 0.0522,
332
+ "step": 27000
333
+ },
334
+ {
335
+ "epoch": 0.57,
336
+ "learning_rate": 4.469975681237139e-06,
337
+ "loss": 0.0522,
338
+ "step": 27500
339
+ },
340
+ {
341
+ "epoch": 0.58,
342
+ "learning_rate": 4.459583047535907e-06,
343
+ "loss": 0.0519,
344
+ "step": 28000
345
+ },
346
+ {
347
+ "epoch": 0.59,
348
+ "learning_rate": 4.449190413834674e-06,
349
+ "loss": 0.0521,
350
+ "step": 28500
351
+ },
352
+ {
353
+ "epoch": 0.6,
354
+ "learning_rate": 4.438797780133442e-06,
355
+ "loss": 0.0518,
356
+ "step": 29000
357
+ },
358
+ {
359
+ "epoch": 0.61,
360
+ "learning_rate": 4.428405146432209e-06,
361
+ "loss": 0.0515,
362
+ "step": 29500
363
+ },
364
+ {
365
+ "epoch": 0.62,
366
+ "learning_rate": 4.418012512730976e-06,
367
+ "loss": 0.0514,
368
+ "step": 30000
369
+ },
370
+ {
371
+ "epoch": 0.63,
372
+ "learning_rate": 4.407619879029744e-06,
373
+ "loss": 0.0511,
374
+ "step": 30500
375
+ },
376
+ {
377
+ "epoch": 0.64,
378
+ "learning_rate": 4.397227245328511e-06,
379
+ "loss": 0.0512,
380
+ "step": 31000
381
+ },
382
+ {
383
+ "epoch": 0.65,
384
+ "learning_rate": 4.386834611627279e-06,
385
+ "loss": 0.0509,
386
+ "step": 31500
387
+ },
388
+ {
389
+ "epoch": 0.66,
390
+ "learning_rate": 4.376441977926046e-06,
391
+ "loss": 0.0513,
392
+ "step": 32000
393
+ },
394
+ {
395
+ "epoch": 0.67,
396
+ "learning_rate": 4.366049344224814e-06,
397
+ "loss": 0.0507,
398
+ "step": 32500
399
+ },
400
+ {
401
+ "epoch": 0.68,
402
+ "learning_rate": 4.355656710523581e-06,
403
+ "loss": 0.0506,
404
+ "step": 33000
405
+ },
406
+ {
407
+ "epoch": 0.69,
408
+ "learning_rate": 4.345264076822349e-06,
409
+ "loss": 0.0503,
410
+ "step": 33500
411
+ },
412
+ {
413
+ "epoch": 0.7,
414
+ "learning_rate": 4.334871443121116e-06,
415
+ "loss": 0.0501,
416
+ "step": 34000
417
+ },
418
+ {
419
+ "epoch": 0.71,
420
+ "learning_rate": 4.324478809419884e-06,
421
+ "loss": 0.0502,
422
+ "step": 34500
423
+ },
424
+ {
425
+ "epoch": 0.72,
426
+ "learning_rate": 4.314086175718651e-06,
427
+ "loss": 0.0505,
428
+ "step": 35000
429
+ },
430
+ {
431
+ "epoch": 0.73,
432
+ "learning_rate": 4.303693542017419e-06,
433
+ "loss": 0.0505,
434
+ "step": 35500
435
+ },
436
+ {
437
+ "epoch": 0.74,
438
+ "learning_rate": 4.293300908316186e-06,
439
+ "loss": 0.0501,
440
+ "step": 36000
441
+ },
442
+ {
443
+ "epoch": 0.75,
444
+ "learning_rate": 4.282908274614953e-06,
445
+ "loss": 0.05,
446
+ "step": 36500
447
+ },
448
+ {
449
+ "epoch": 0.76,
450
+ "learning_rate": 4.272515640913721e-06,
451
+ "loss": 0.05,
452
+ "step": 37000
453
+ },
454
+ {
455
+ "epoch": 0.77,
456
+ "learning_rate": 4.262123007212488e-06,
457
+ "loss": 0.0498,
458
+ "step": 37500
459
+ },
460
+ {
461
+ "epoch": 0.78,
462
+ "learning_rate": 4.251730373511256e-06,
463
+ "loss": 0.0498,
464
+ "step": 38000
465
+ },
466
+ {
467
+ "epoch": 0.79,
468
+ "learning_rate": 4.241337739810023e-06,
469
+ "loss": 0.0496,
470
+ "step": 38500
471
+ },
472
+ {
473
+ "epoch": 0.8,
474
+ "learning_rate": 4.23094510610879e-06,
475
+ "loss": 0.0496,
476
+ "step": 39000
477
+ },
478
+ {
479
+ "epoch": 0.81,
480
+ "learning_rate": 4.220552472407558e-06,
481
+ "loss": 0.0493,
482
+ "step": 39500
483
+ },
484
+ {
485
+ "epoch": 0.82,
486
+ "learning_rate": 4.210159838706326e-06,
487
+ "loss": 0.0495,
488
+ "step": 40000
489
+ },
490
+ {
491
+ "epoch": 0.83,
492
+ "learning_rate": 4.199767205005093e-06,
493
+ "loss": 0.049,
494
+ "step": 40500
495
+ },
496
+ {
497
+ "epoch": 0.85,
498
+ "learning_rate": 4.189374571303861e-06,
499
+ "loss": 0.0493,
500
+ "step": 41000
501
+ },
502
+ {
503
+ "epoch": 0.86,
504
+ "learning_rate": 4.178981937602628e-06,
505
+ "loss": 0.0491,
506
+ "step": 41500
507
+ },
508
+ {
509
+ "epoch": 0.87,
510
+ "learning_rate": 4.1685893039013956e-06,
511
+ "loss": 0.0492,
512
+ "step": 42000
513
+ },
514
+ {
515
+ "epoch": 0.88,
516
+ "learning_rate": 4.158196670200163e-06,
517
+ "loss": 0.0492,
518
+ "step": 42500
519
+ },
520
+ {
521
+ "epoch": 0.89,
522
+ "learning_rate": 4.14780403649893e-06,
523
+ "loss": 0.0487,
524
+ "step": 43000
525
+ },
526
+ {
527
+ "epoch": 0.9,
528
+ "learning_rate": 4.1374114027976976e-06,
529
+ "loss": 0.049,
530
+ "step": 43500
531
+ },
532
+ {
533
+ "epoch": 0.91,
534
+ "learning_rate": 4.127018769096465e-06,
535
+ "loss": 0.0487,
536
+ "step": 44000
537
+ },
538
+ {
539
+ "epoch": 0.92,
540
+ "learning_rate": 4.116626135395232e-06,
541
+ "loss": 0.0489,
542
+ "step": 44500
543
+ },
544
+ {
545
+ "epoch": 0.93,
546
+ "learning_rate": 4.1062335016939995e-06,
547
+ "loss": 0.0485,
548
+ "step": 45000
549
+ },
550
+ {
551
+ "epoch": 0.94,
552
+ "learning_rate": 4.095840867992767e-06,
553
+ "loss": 0.0486,
554
+ "step": 45500
555
+ },
556
+ {
557
+ "epoch": 0.95,
558
+ "learning_rate": 4.0854482342915345e-06,
559
+ "loss": 0.0485,
560
+ "step": 46000
561
+ },
562
+ {
563
+ "epoch": 0.96,
564
+ "learning_rate": 4.0750556005903015e-06,
565
+ "loss": 0.0487,
566
+ "step": 46500
567
+ },
568
+ {
569
+ "epoch": 0.97,
570
+ "learning_rate": 4.0646629668890694e-06,
571
+ "loss": 0.0482,
572
+ "step": 47000
573
+ },
574
+ {
575
+ "epoch": 0.98,
576
+ "learning_rate": 4.054270333187837e-06,
577
+ "loss": 0.0482,
578
+ "step": 47500
579
+ },
580
+ {
581
+ "epoch": 0.99,
582
+ "learning_rate": 4.043877699486604e-06,
583
+ "loss": 0.0481,
584
+ "step": 48000
585
+ },
586
+ {
587
+ "epoch": 1.0,
588
+ "learning_rate": 4.033485065785372e-06,
589
+ "loss": 0.0481,
590
+ "step": 48500
591
+ },
592
+ {
593
+ "epoch": 1.0,
594
+ "eval_loss": 0.04874278977513313,
595
+ "eval_runtime": 1479.0093,
596
+ "eval_samples_per_second": 13.382,
597
+ "eval_steps_per_second": 0.836,
598
+ "step": 48511
599
+ },
600
+ {
601
+ "epoch": 1.01,
602
+ "learning_rate": 4.023092432084139e-06,
603
+ "loss": 0.0479,
604
+ "step": 49000
605
+ },
606
+ {
607
+ "epoch": 1.02,
608
+ "learning_rate": 4.012699798382906e-06,
609
+ "loss": 0.0478,
610
+ "step": 49500
611
+ },
612
+ {
613
+ "epoch": 1.03,
614
+ "learning_rate": 4.002307164681674e-06,
615
+ "loss": 0.048,
616
+ "step": 50000
617
+ },
618
+ {
619
+ "epoch": 1.04,
620
+ "learning_rate": 3.991914530980441e-06,
621
+ "loss": 0.0477,
622
+ "step": 50500
623
+ },
624
+ {
625
+ "epoch": 1.05,
626
+ "learning_rate": 3.981521897279208e-06,
627
+ "loss": 0.0478,
628
+ "step": 51000
629
+ },
630
+ {
631
+ "epoch": 1.06,
632
+ "learning_rate": 3.971129263577976e-06,
633
+ "loss": 0.0476,
634
+ "step": 51500
635
+ },
636
+ {
637
+ "epoch": 1.07,
638
+ "learning_rate": 3.960736629876743e-06,
639
+ "loss": 0.0475,
640
+ "step": 52000
641
+ },
642
+ {
643
+ "epoch": 1.08,
644
+ "learning_rate": 3.950343996175511e-06,
645
+ "loss": 0.0473,
646
+ "step": 52500
647
+ },
648
+ {
649
+ "epoch": 1.09,
650
+ "learning_rate": 3.939951362474278e-06,
651
+ "loss": 0.0477,
652
+ "step": 53000
653
+ },
654
+ {
655
+ "epoch": 1.1,
656
+ "learning_rate": 3.929558728773046e-06,
657
+ "loss": 0.0472,
658
+ "step": 53500
659
+ },
660
+ {
661
+ "epoch": 1.11,
662
+ "learning_rate": 3.919166095071813e-06,
663
+ "loss": 0.0471,
664
+ "step": 54000
665
+ },
666
+ {
667
+ "epoch": 1.12,
668
+ "learning_rate": 3.908773461370581e-06,
669
+ "loss": 0.0472,
670
+ "step": 54500
671
+ },
672
+ {
673
+ "epoch": 1.13,
674
+ "learning_rate": 3.898380827669349e-06,
675
+ "loss": 0.0472,
676
+ "step": 55000
677
+ },
678
+ {
679
+ "epoch": 1.14,
680
+ "learning_rate": 3.887988193968116e-06,
681
+ "loss": 0.0471,
682
+ "step": 55500
683
+ },
684
+ {
685
+ "epoch": 1.15,
686
+ "learning_rate": 3.877595560266883e-06,
687
+ "loss": 0.0472,
688
+ "step": 56000
689
+ },
690
+ {
691
+ "epoch": 1.16,
692
+ "learning_rate": 3.867202926565651e-06,
693
+ "loss": 0.0471,
694
+ "step": 56500
695
+ },
696
+ {
697
+ "epoch": 1.17,
698
+ "learning_rate": 3.856810292864418e-06,
699
+ "loss": 0.047,
700
+ "step": 57000
701
+ },
702
+ {
703
+ "epoch": 1.19,
704
+ "learning_rate": 3.846417659163185e-06,
705
+ "loss": 0.0472,
706
+ "step": 57500
707
+ },
708
+ {
709
+ "epoch": 1.2,
710
+ "learning_rate": 3.836025025461953e-06,
711
+ "loss": 0.0471,
712
+ "step": 58000
713
+ },
714
+ {
715
+ "epoch": 1.21,
716
+ "learning_rate": 3.82563239176072e-06,
717
+ "loss": 0.0468,
718
+ "step": 58500
719
+ },
720
+ {
721
+ "epoch": 1.22,
722
+ "learning_rate": 3.815239758059488e-06,
723
+ "loss": 0.047,
724
+ "step": 59000
725
+ },
726
+ {
727
+ "epoch": 1.23,
728
+ "learning_rate": 3.8048471243582554e-06,
729
+ "loss": 0.0467,
730
+ "step": 59500
731
+ },
732
+ {
733
+ "epoch": 1.24,
734
+ "learning_rate": 3.7944544906570224e-06,
735
+ "loss": 0.0465,
736
+ "step": 60000
737
+ },
738
+ {
739
+ "epoch": 1.25,
740
+ "learning_rate": 3.7840618569557903e-06,
741
+ "loss": 0.0467,
742
+ "step": 60500
743
+ },
744
+ {
745
+ "epoch": 1.26,
746
+ "learning_rate": 3.7736692232545574e-06,
747
+ "loss": 0.0465,
748
+ "step": 61000
749
+ },
750
+ {
751
+ "epoch": 1.27,
752
+ "learning_rate": 3.763276589553325e-06,
753
+ "loss": 0.0467,
754
+ "step": 61500
755
+ },
756
+ {
757
+ "epoch": 1.28,
758
+ "learning_rate": 3.7528839558520923e-06,
759
+ "loss": 0.0468,
760
+ "step": 62000
761
+ },
762
+ {
763
+ "epoch": 1.29,
764
+ "learning_rate": 3.7424913221508598e-06,
765
+ "loss": 0.0469,
766
+ "step": 62500
767
+ },
768
+ {
769
+ "epoch": 1.3,
770
+ "learning_rate": 3.7320986884496272e-06,
771
+ "loss": 0.0465,
772
+ "step": 63000
773
+ },
774
+ {
775
+ "epoch": 1.31,
776
+ "learning_rate": 3.7217060547483947e-06,
777
+ "loss": 0.0462,
778
+ "step": 63500
779
+ },
780
+ {
781
+ "epoch": 1.32,
782
+ "learning_rate": 3.7113134210471618e-06,
783
+ "loss": 0.0467,
784
+ "step": 64000
785
+ },
786
+ {
787
+ "epoch": 1.33,
788
+ "learning_rate": 3.7009207873459297e-06,
789
+ "loss": 0.0465,
790
+ "step": 64500
791
+ },
792
+ {
793
+ "epoch": 1.34,
794
+ "learning_rate": 3.6905281536446967e-06,
795
+ "loss": 0.0464,
796
+ "step": 65000
797
+ },
798
+ {
799
+ "epoch": 1.35,
800
+ "learning_rate": 3.6801355199434646e-06,
801
+ "loss": 0.0465,
802
+ "step": 65500
803
+ },
804
+ {
805
+ "epoch": 1.36,
806
+ "learning_rate": 3.6697428862422316e-06,
807
+ "loss": 0.0465,
808
+ "step": 66000
809
+ },
810
+ {
811
+ "epoch": 1.37,
812
+ "learning_rate": 3.659350252540999e-06,
813
+ "loss": 0.0463,
814
+ "step": 66500
815
+ },
816
+ {
817
+ "epoch": 1.38,
818
+ "learning_rate": 3.648957618839767e-06,
819
+ "loss": 0.0461,
820
+ "step": 67000
821
+ },
822
+ {
823
+ "epoch": 1.39,
824
+ "learning_rate": 3.638564985138534e-06,
825
+ "loss": 0.0461,
826
+ "step": 67500
827
+ },
828
+ {
829
+ "epoch": 1.4,
830
+ "learning_rate": 3.628172351437301e-06,
831
+ "loss": 0.0462,
832
+ "step": 68000
833
+ },
834
+ {
835
+ "epoch": 1.41,
836
+ "learning_rate": 3.617779717736069e-06,
837
+ "loss": 0.0459,
838
+ "step": 68500
839
+ },
840
+ {
841
+ "epoch": 1.42,
842
+ "learning_rate": 3.6073870840348365e-06,
843
+ "loss": 0.0462,
844
+ "step": 69000
845
+ },
846
+ {
847
+ "epoch": 1.43,
848
+ "learning_rate": 3.596994450333604e-06,
849
+ "loss": 0.0459,
850
+ "step": 69500
851
+ },
852
+ {
853
+ "epoch": 1.44,
854
+ "learning_rate": 3.5866018166323714e-06,
855
+ "loss": 0.0459,
856
+ "step": 70000
857
+ },
858
+ {
859
+ "epoch": 1.45,
860
+ "learning_rate": 3.5762091829311385e-06,
861
+ "loss": 0.0457,
862
+ "step": 70500
863
+ },
864
+ {
865
+ "epoch": 1.46,
866
+ "learning_rate": 3.5658165492299064e-06,
867
+ "loss": 0.0457,
868
+ "step": 71000
869
+ },
870
+ {
871
+ "epoch": 1.47,
872
+ "learning_rate": 3.5554239155286734e-06,
873
+ "loss": 0.0456,
874
+ "step": 71500
875
+ },
876
+ {
877
+ "epoch": 1.48,
878
+ "learning_rate": 3.5450312818274413e-06,
879
+ "loss": 0.0457,
880
+ "step": 72000
881
+ },
882
+ {
883
+ "epoch": 1.49,
884
+ "learning_rate": 3.5346386481262083e-06,
885
+ "loss": 0.0461,
886
+ "step": 72500
887
+ },
888
+ {
889
+ "epoch": 1.5,
890
+ "learning_rate": 3.524246014424976e-06,
891
+ "loss": 0.046,
892
+ "step": 73000
893
+ },
894
+ {
895
+ "epoch": 1.52,
896
+ "learning_rate": 3.5138533807237433e-06,
897
+ "loss": 0.0456,
898
+ "step": 73500
899
+ },
900
+ {
901
+ "epoch": 1.53,
902
+ "learning_rate": 3.5034607470225108e-06,
903
+ "loss": 0.0456,
904
+ "step": 74000
905
+ },
906
+ {
907
+ "epoch": 1.54,
908
+ "learning_rate": 3.493068113321278e-06,
909
+ "loss": 0.0458,
910
+ "step": 74500
911
+ },
912
+ {
913
+ "epoch": 1.55,
914
+ "learning_rate": 3.4826754796200457e-06,
915
+ "loss": 0.0455,
916
+ "step": 75000
917
+ },
918
+ {
919
+ "epoch": 1.56,
920
+ "learning_rate": 3.4722828459188128e-06,
921
+ "loss": 0.0458,
922
+ "step": 75500
923
+ },
924
+ {
925
+ "epoch": 1.57,
926
+ "learning_rate": 3.4618902122175806e-06,
927
+ "loss": 0.0455,
928
+ "step": 76000
929
+ },
930
+ {
931
+ "epoch": 1.58,
932
+ "learning_rate": 3.451497578516348e-06,
933
+ "loss": 0.0459,
934
+ "step": 76500
935
+ },
936
+ {
937
+ "epoch": 1.59,
938
+ "learning_rate": 3.441104944815115e-06,
939
+ "loss": 0.0455,
940
+ "step": 77000
941
+ },
942
+ {
943
+ "epoch": 1.6,
944
+ "learning_rate": 3.430712311113883e-06,
945
+ "loss": 0.0457,
946
+ "step": 77500
947
+ },
948
+ {
949
+ "epoch": 1.61,
950
+ "learning_rate": 3.42031967741265e-06,
951
+ "loss": 0.0456,
952
+ "step": 78000
953
+ },
954
+ {
955
+ "epoch": 1.62,
956
+ "learning_rate": 3.409927043711417e-06,
957
+ "loss": 0.0453,
958
+ "step": 78500
959
+ },
960
+ {
961
+ "epoch": 1.63,
962
+ "learning_rate": 3.399534410010185e-06,
963
+ "loss": 0.0454,
964
+ "step": 79000
965
+ },
966
+ {
967
+ "epoch": 1.64,
968
+ "learning_rate": 3.3891417763089525e-06,
969
+ "loss": 0.0453,
970
+ "step": 79500
971
+ },
972
+ {
973
+ "epoch": 1.65,
974
+ "learning_rate": 3.37874914260772e-06,
975
+ "loss": 0.0455,
976
+ "step": 80000
977
+ },
978
+ {
979
+ "epoch": 1.66,
980
+ "learning_rate": 3.3683565089064875e-06,
981
+ "loss": 0.0453,
982
+ "step": 80500
983
+ },
984
+ {
985
+ "epoch": 1.67,
986
+ "learning_rate": 3.3579638752052545e-06,
987
+ "loss": 0.0455,
988
+ "step": 81000
989
+ },
990
+ {
991
+ "epoch": 1.68,
992
+ "learning_rate": 3.3475712415040224e-06,
993
+ "loss": 0.0451,
994
+ "step": 81500
995
+ },
996
+ {
997
+ "epoch": 1.69,
998
+ "learning_rate": 3.3371786078027895e-06,
999
+ "loss": 0.0448,
1000
+ "step": 82000
1001
+ },
1002
+ {
1003
+ "epoch": 1.7,
1004
+ "learning_rate": 3.3267859741015574e-06,
1005
+ "loss": 0.0453,
1006
+ "step": 82500
1007
+ },
1008
+ {
1009
+ "epoch": 1.71,
1010
+ "learning_rate": 3.3163933404003244e-06,
1011
+ "loss": 0.045,
1012
+ "step": 83000
1013
+ },
1014
+ {
1015
+ "epoch": 1.72,
1016
+ "learning_rate": 3.306000706699092e-06,
1017
+ "loss": 0.045,
1018
+ "step": 83500
1019
+ },
1020
+ {
1021
+ "epoch": 1.73,
1022
+ "learning_rate": 3.2956080729978598e-06,
1023
+ "loss": 0.0453,
1024
+ "step": 84000
1025
+ },
1026
+ {
1027
+ "epoch": 1.74,
1028
+ "learning_rate": 3.285215439296627e-06,
1029
+ "loss": 0.045,
1030
+ "step": 84500
1031
+ },
1032
+ {
1033
+ "epoch": 1.75,
1034
+ "learning_rate": 3.274822805595394e-06,
1035
+ "loss": 0.0454,
1036
+ "step": 85000
1037
+ },
1038
+ {
1039
+ "epoch": 1.76,
1040
+ "learning_rate": 3.2644301718941618e-06,
1041
+ "loss": 0.045,
1042
+ "step": 85500
1043
+ },
1044
+ {
1045
+ "epoch": 1.77,
1046
+ "learning_rate": 3.254037538192929e-06,
1047
+ "loss": 0.0449,
1048
+ "step": 86000
1049
+ },
1050
+ {
1051
+ "epoch": 1.78,
1052
+ "learning_rate": 3.2436449044916967e-06,
1053
+ "loss": 0.045,
1054
+ "step": 86500
1055
+ },
1056
+ {
1057
+ "epoch": 1.79,
1058
+ "learning_rate": 3.233252270790464e-06,
1059
+ "loss": 0.0448,
1060
+ "step": 87000
1061
+ },
1062
+ {
1063
+ "epoch": 1.8,
1064
+ "learning_rate": 3.2228596370892312e-06,
1065
+ "loss": 0.0449,
1066
+ "step": 87500
1067
+ },
1068
+ {
1069
+ "epoch": 1.81,
1070
+ "learning_rate": 3.212467003387999e-06,
1071
+ "loss": 0.0446,
1072
+ "step": 88000
1073
+ },
1074
+ {
1075
+ "epoch": 1.82,
1076
+ "learning_rate": 3.202074369686766e-06,
1077
+ "loss": 0.045,
1078
+ "step": 88500
1079
+ },
1080
+ {
1081
+ "epoch": 1.83,
1082
+ "learning_rate": 3.191681735985534e-06,
1083
+ "loss": 0.0449,
1084
+ "step": 89000
1085
+ },
1086
+ {
1087
+ "epoch": 1.84,
1088
+ "learning_rate": 3.181289102284301e-06,
1089
+ "loss": 0.0446,
1090
+ "step": 89500
1091
+ },
1092
+ {
1093
+ "epoch": 1.86,
1094
+ "learning_rate": 3.1708964685830686e-06,
1095
+ "loss": 0.0445,
1096
+ "step": 90000
1097
+ },
1098
+ {
1099
+ "epoch": 1.87,
1100
+ "learning_rate": 3.160503834881836e-06,
1101
+ "loss": 0.0448,
1102
+ "step": 90500
1103
+ },
1104
+ {
1105
+ "epoch": 1.88,
1106
+ "learning_rate": 3.1501112011806035e-06,
1107
+ "loss": 0.0445,
1108
+ "step": 91000
1109
+ },
1110
+ {
1111
+ "epoch": 1.89,
1112
+ "learning_rate": 3.1397185674793706e-06,
1113
+ "loss": 0.0447,
1114
+ "step": 91500
1115
+ },
1116
+ {
1117
+ "epoch": 1.9,
1118
+ "learning_rate": 3.1293259337781385e-06,
1119
+ "loss": 0.0446,
1120
+ "step": 92000
1121
+ },
1122
+ {
1123
+ "epoch": 1.91,
1124
+ "learning_rate": 3.1189333000769055e-06,
1125
+ "loss": 0.0449,
1126
+ "step": 92500
1127
+ },
1128
+ {
1129
+ "epoch": 1.92,
1130
+ "learning_rate": 3.1085406663756734e-06,
1131
+ "loss": 0.0446,
1132
+ "step": 93000
1133
+ },
1134
+ {
1135
+ "epoch": 1.93,
1136
+ "learning_rate": 3.0981480326744404e-06,
1137
+ "loss": 0.0442,
1138
+ "step": 93500
1139
+ },
1140
+ {
1141
+ "epoch": 1.94,
1142
+ "learning_rate": 3.087755398973208e-06,
1143
+ "loss": 0.0445,
1144
+ "step": 94000
1145
+ },
1146
+ {
1147
+ "epoch": 1.95,
1148
+ "learning_rate": 3.077362765271976e-06,
1149
+ "loss": 0.0444,
1150
+ "step": 94500
1151
+ },
1152
+ {
1153
+ "epoch": 1.96,
1154
+ "learning_rate": 3.066970131570743e-06,
1155
+ "loss": 0.0444,
1156
+ "step": 95000
1157
+ },
1158
+ {
1159
+ "epoch": 1.97,
1160
+ "learning_rate": 3.05657749786951e-06,
1161
+ "loss": 0.0444,
1162
+ "step": 95500
1163
+ },
1164
+ {
1165
+ "epoch": 1.98,
1166
+ "learning_rate": 3.046184864168278e-06,
1167
+ "loss": 0.0444,
1168
+ "step": 96000
1169
+ },
1170
+ {
1171
+ "epoch": 1.99,
1172
+ "learning_rate": 3.0357922304670453e-06,
1173
+ "loss": 0.0446,
1174
+ "step": 96500
1175
+ },
1176
+ {
1177
+ "epoch": 2.0,
1178
+ "learning_rate": 3.0253995967658127e-06,
1179
+ "loss": 0.0443,
1180
+ "step": 97000
1181
+ },
1182
+ {
1183
+ "epoch": 2.0,
1184
+ "eval_loss": 0.04501689225435257,
1185
+ "eval_runtime": 1478.7113,
1186
+ "eval_samples_per_second": 13.385,
1187
+ "eval_steps_per_second": 0.837,
1188
+ "step": 97022
1189
+ }
1190
+ ],
1191
+ "max_steps": 242555,
1192
+ "num_train_epochs": 5,
1193
+ "total_flos": 1.1940942833642373e+18,
1194
+ "trial_name": null,
1195
+ "trial_params": null
1196
+ }
model/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51ee1474c90d834df17eec7e46d87cc82f364065cbe182dd8829d6f16c838280
3
+ size 2735
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ numpy>=1.16.4
2
+ textwrap3==0.9.2
3
+ Pillow==8.0.1
4
+ transformers==4.8.0
5
+ gradio>=2.0.7
6
+ shapely==1.7.1
7
+ aggdraw==1.3.12
8
+ torch==1.7.1