Spaces:
Runtime error
Runtime error
Add application and pretraied model
Browse files- app.py +208 -0
- model/config.json +53 -0
- model/pytorch_model.bin +3 -0
- model/rng_state.pth +3 -0
- model/scheduler.pt +3 -0
- model/trainer_state.json +1196 -0
- model/training_args.bin +3 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import re
|
5 |
+
import textwrap
|
6 |
+
|
7 |
+
from shapely.geometry.polygon import Polygon
|
8 |
+
import aggdraw
|
9 |
+
from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont, ImageColor
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
|
14 |
+
|
15 |
+
finetuned = AutoModelForCausalLM.from_pretrained('model')
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained('gpt2')
|
17 |
+
|
18 |
+
# Utility functions
|
19 |
+
|
20 |
+
housegan_labels = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "missing": 5, "closet": 6,
|
21 |
+
"balcony": 7, "corridor": 8, "dining_room": 9, "laundry_room": 10}
|
22 |
+
|
23 |
+
housegan_colors = [[0, 0, 0], [197, 203, 159], [169, 89, 142], [0, 132, 66], [190, 0, 198], [255, 255, 255],
|
24 |
+
[6, 53, 17], [2, 54, 192], [132, 151, 246], [197, 203, 159], [6, 53, 17],]
|
25 |
+
|
26 |
+
regex = re.compile(".*?\((.*?)\)")
|
27 |
+
|
28 |
+
def draw_polygons(polygons, colors, im_size=(256, 256), b_color="white", fpath=None):
|
29 |
+
|
30 |
+
image = Image.new("RGB", im_size, color="white")
|
31 |
+
draw = aggdraw.Draw(image)
|
32 |
+
|
33 |
+
for poly, color, in zip(polygons, colors):
|
34 |
+
#get initial polygon coordinates
|
35 |
+
xy = poly.exterior.xy
|
36 |
+
coords = np.dstack((xy[1], xy[0])).flatten()
|
37 |
+
# draw it on canvas, with the appropriate colors
|
38 |
+
brush = aggdraw.Brush((0, 0, 0), opacity=255)
|
39 |
+
draw.polygon(coords, brush)
|
40 |
+
|
41 |
+
|
42 |
+
#get inner polygon coordinates
|
43 |
+
small_poly = poly.buffer(-1, resolution=32, cap_style=2, join_style=2, mitre_limit=5.0)
|
44 |
+
if small_poly.geom_type == 'MultiPolygon':
|
45 |
+
mycoordslist = [list(x.exterior.coords) for x in small_poly]
|
46 |
+
for coord in mycoordslist:
|
47 |
+
coords = np.dstack((np.array(coord)[:,1], np.array(coord)[:, 0])).flatten()
|
48 |
+
brush2 = aggdraw.Brush((0, 0, 0), opacity=255)
|
49 |
+
draw.polygon(coords, brush2)
|
50 |
+
elif poly.geom_type == 'Polygon':
|
51 |
+
#get inner polygon coordinates
|
52 |
+
xy2 = small_poly.exterior.xy
|
53 |
+
coords2 = np.dstack((xy2[1], xy2[0])).flatten()
|
54 |
+
# draw it on canvas, with the appropriate colors
|
55 |
+
brush2 = aggdraw.Brush((color[0], color[1], color[2]), opacity=255)
|
56 |
+
draw.polygon(coords2, brush2)
|
57 |
+
|
58 |
+
image = Image.frombytes("RGB", (256,256), draw.tobytes()).transpose(Image.FLIP_TOP_BOTTOM)
|
59 |
+
|
60 |
+
if(fpath):
|
61 |
+
image.save(fpath, quality=100, subsampling=0)
|
62 |
+
|
63 |
+
return draw, image
|
64 |
+
|
65 |
+
def prompt_to_layout(user_prompt, fpath=None):
|
66 |
+
|
67 |
+
model_prompt = '[User prompt] {} [Layout]'.format(user_prompt)
|
68 |
+
input_ids = tokenizer(model_prompt, return_tensors='pt')
|
69 |
+
output = finetuned.generate(**input_ids, do_sample=True, top_p=0.94, top_k=100, max_length=300)
|
70 |
+
output = tokenizer.batch_decode(output, skip_special_tokens=True)
|
71 |
+
output = output[0].split('[Layout]')[1].split(', ')
|
72 |
+
spaces = [txt.split(':')[0] for txt in output]
|
73 |
+
|
74 |
+
coordinates = [txt.split(':')[1] for txt in output]
|
75 |
+
coordinates = [re.findall(regex, coord) for coord in coordinates]
|
76 |
+
|
77 |
+
polygons = []
|
78 |
+
for coord in coordinates:
|
79 |
+
polygons.append([point.split(',') for point in coord])
|
80 |
+
|
81 |
+
geom = []
|
82 |
+
for poly in polygons:
|
83 |
+
geom.append(Polygon(np.array(poly, dtype=int)))
|
84 |
+
|
85 |
+
colors = [housegan_colors[housegan_labels[space]] for space in spaces]
|
86 |
+
|
87 |
+
_, im = draw_polygons(geom, colors, fpath=fpath)
|
88 |
+
|
89 |
+
legend = Image.open(r"C:\\Users\\user\\Desktop\\legend3.png")
|
90 |
+
|
91 |
+
im = np.array(im)
|
92 |
+
im[:40, :] = np.array(legend)
|
93 |
+
im = Image.fromarray(im)
|
94 |
+
|
95 |
+
return im, output
|
96 |
+
|
97 |
+
def mut_txt2layout(mut_output):
|
98 |
+
output = mut_output[0].split('[Layout]')[1].split(', ')
|
99 |
+
spaces = [txt.split(':')[0].strip(' ') for txt in output]
|
100 |
+
coordinates = [txt.split(':')[1] for txt in output]
|
101 |
+
coordinates = [re.findall(regex, coord) for coord in coordinates]
|
102 |
+
|
103 |
+
polygons = []
|
104 |
+
for coord in coordinates:
|
105 |
+
polygons.append([point.split(',') for point in coord])
|
106 |
+
|
107 |
+
geom = []
|
108 |
+
for poly in polygons:
|
109 |
+
geom.append(Polygon(np.array(poly, dtype=int)))
|
110 |
+
|
111 |
+
colors = [housegan_colors[housegan_labels[space]] for space in spaces]
|
112 |
+
_, im = draw_polygons(geom, colors, fpath=None)
|
113 |
+
|
114 |
+
legend = Image.open(r"C:\\Users\\user\\Desktop\\legend3.png")
|
115 |
+
|
116 |
+
im = np.array(im)
|
117 |
+
im[:40, :] = np.array(legend)
|
118 |
+
im = Image.fromarray(im)
|
119 |
+
|
120 |
+
return im
|
121 |
+
|
122 |
+
def prompt_with_mutation(user_prompt, fpath=None):
|
123 |
+
|
124 |
+
#Create initial layout based on prompt
|
125 |
+
im, output = prompt_to_layout(user_prompt)
|
126 |
+
|
127 |
+
#Create mutated layout based on initial
|
128 |
+
cut_off = np.random.randint(1, 3, size=1)[0]
|
129 |
+
cut_off = min(cut_off, len(output)-1)
|
130 |
+
new_prompt = model_prompt + ', '.join(output[:cut_off]) + ', '
|
131 |
+
input_ids = tokenizer(new_prompt, return_tensors='pt')
|
132 |
+
mut_output = finetuned.generate(**input_ids, do_sample=True, top_p=0.94, top_k=100, max_length=200)
|
133 |
+
mut_output = tokenizer.batch_decode(mut_output, skip_special_tokens=True)
|
134 |
+
mut_im = mut_txt2layout(mut_output)
|
135 |
+
|
136 |
+
combined = merge_images(im, mut_im)
|
137 |
+
|
138 |
+
return im, mut_im
|
139 |
+
|
140 |
+
# Gradio App
|
141 |
+
|
142 |
+
def gen_and_mutate(user_prompt, mutate=False):
|
143 |
+
if(mutate):
|
144 |
+
im, mut_im = None, None
|
145 |
+
while (mut_im is None):
|
146 |
+
im, mut_im = prompt_with_mutation(user_prompt)
|
147 |
+
else:
|
148 |
+
mut_im=Image.open(r"C:\\Users\\user\\Desktop\\empty.png")
|
149 |
+
im, _ = prompt_to_layout(user_prompt)
|
150 |
+
|
151 |
+
return im, mut_im
|
152 |
+
|
153 |
+
checkbox = gr.inputs.Checkbox(label='Mutate')
|
154 |
+
textbox = gr.inputs.Textbox(placeholder='Enter a prompt describing a layout, see below for instructions')
|
155 |
+
|
156 |
+
generated = gr.outputs.Image(label='Generated Layout')
|
157 |
+
mutated = gr.outputs.Image(label='Mutated Layout')
|
158 |
+
|
159 |
+
iface = gr.Interface(fn=gen_and_mutate, inputs=[textbox, checkbox], outputs=[generated, mutated],
|
160 |
+
thumbnail=r"E:\Datasets\MyFloorplans\text2text\thumbnail_gradio.PNG",
|
161 |
+
description='Demo of Semantic Generation of Residential Layouts \n',
|
162 |
+
article='''<div>
|
163 |
+
<p> This app allows users the use of natural language prompts for appartment layout generation, using a variety of semantic information:</p>
|
164 |
+
<ul>
|
165 |
+
<li> <strong>typology</strong>: "a bedroom with two bedrooms and two bathrooms"</li>
|
166 |
+
<li> <strong>enumeration</strong>: "a house with five rooms"</li>
|
167 |
+
<li> <strong>adjacency</strong>: "the kitchen is adjacent to a bedroom", "the living room is not adjacent to the bathroom"</li>
|
168 |
+
<li> <strong>location</strong>: "a house with a bedroom in the north east side"</li>
|
169 |
+
</ul>
|
170 |
+
<p>You can also create a mutation of the generated layout by enabling the 'Mutate' option.</p>
|
171 |
+
<p> Made by: <a href='https://www.linkedin.com/in/theodorosgalanos/'>Theodoros </a> <a href='https://twitter.com/TheodoreGalanos'> Galanos</a> and <a href='https://twitter.com/tylerlastovich'>Tyler Lastovich</a> </p>
|
172 |
+
</div>''')
|
173 |
+
|
174 |
+
iface.launch()
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
|
model/config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "EleutherAI/gpt-neo-125M",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPTNeoForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0,
|
8 |
+
"attention_layers": [
|
9 |
+
"global",
|
10 |
+
"local",
|
11 |
+
"global",
|
12 |
+
"local",
|
13 |
+
"global",
|
14 |
+
"local",
|
15 |
+
"global",
|
16 |
+
"local",
|
17 |
+
"global",
|
18 |
+
"local",
|
19 |
+
"global",
|
20 |
+
"local"
|
21 |
+
],
|
22 |
+
"attention_types": [
|
23 |
+
[
|
24 |
+
[
|
25 |
+
"global",
|
26 |
+
"local"
|
27 |
+
],
|
28 |
+
6
|
29 |
+
]
|
30 |
+
],
|
31 |
+
"bos_token_id": 50256,
|
32 |
+
"embed_dropout": 0,
|
33 |
+
"eos_token_id": 50256,
|
34 |
+
"gradient_checkpointing": false,
|
35 |
+
"hidden_size": 768,
|
36 |
+
"initializer_range": 0.02,
|
37 |
+
"intermediate_size": null,
|
38 |
+
"layer_norm_epsilon": 1e-05,
|
39 |
+
"max_position_embeddings": 2048,
|
40 |
+
"model_type": "gpt_neo",
|
41 |
+
"num_heads": 12,
|
42 |
+
"num_layers": 12,
|
43 |
+
"resid_dropout": 0,
|
44 |
+
"summary_activation": null,
|
45 |
+
"summary_first_dropout": 0.1,
|
46 |
+
"summary_proj_to_labels": true,
|
47 |
+
"summary_type": "cls_index",
|
48 |
+
"summary_use_proj": true,
|
49 |
+
"transformers_version": "4.8.1",
|
50 |
+
"use_cache": true,
|
51 |
+
"vocab_size": 50257,
|
52 |
+
"window_size": 256
|
53 |
+
}
|
model/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df35819ca3ee7d6667b734dcd2a92c2ab539a72b399f8fb76cdbd89ad8a57df5
|
3 |
+
size 526021937
|
model/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6081874f960bdd9087fced5865fc0df1593c2ffcde9c679c276725789565994
|
3 |
+
size 15691
|
model/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4175248537ab98940ac983894a7f290b125e0bdf7b03a2c00c7c4855d080b5f
|
3 |
+
size 623
|
model/trainer_state.json
ADDED
@@ -0,0 +1,1196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.0,
|
5 |
+
"global_step": 97022,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 1.25e-06,
|
13 |
+
"loss": 0.3381,
|
14 |
+
"step": 500
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.02,
|
18 |
+
"learning_rate": 2.5e-06,
|
19 |
+
"loss": 0.1717,
|
20 |
+
"step": 1000
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.03,
|
24 |
+
"learning_rate": 3.7500000000000005e-06,
|
25 |
+
"loss": 0.1167,
|
26 |
+
"step": 1500
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.04,
|
30 |
+
"learning_rate": 5e-06,
|
31 |
+
"loss": 0.0962,
|
32 |
+
"step": 2000
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.05,
|
36 |
+
"learning_rate": 4.9896073662987675e-06,
|
37 |
+
"loss": 0.0848,
|
38 |
+
"step": 2500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.06,
|
42 |
+
"learning_rate": 4.979214732597535e-06,
|
43 |
+
"loss": 0.0796,
|
44 |
+
"step": 3000
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.07,
|
48 |
+
"learning_rate": 4.968822098896302e-06,
|
49 |
+
"loss": 0.0758,
|
50 |
+
"step": 3500
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.08,
|
54 |
+
"learning_rate": 4.95842946519507e-06,
|
55 |
+
"loss": 0.0732,
|
56 |
+
"step": 4000
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.09,
|
60 |
+
"learning_rate": 4.948036831493837e-06,
|
61 |
+
"loss": 0.071,
|
62 |
+
"step": 4500
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.1,
|
66 |
+
"learning_rate": 4.937644197792605e-06,
|
67 |
+
"loss": 0.0697,
|
68 |
+
"step": 5000
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.11,
|
72 |
+
"learning_rate": 4.927251564091372e-06,
|
73 |
+
"loss": 0.0681,
|
74 |
+
"step": 5500
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.12,
|
78 |
+
"learning_rate": 4.91685893039014e-06,
|
79 |
+
"loss": 0.0678,
|
80 |
+
"step": 6000
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.13,
|
84 |
+
"learning_rate": 4.906466296688907e-06,
|
85 |
+
"loss": 0.0656,
|
86 |
+
"step": 6500
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.14,
|
90 |
+
"learning_rate": 4.896073662987675e-06,
|
91 |
+
"loss": 0.0651,
|
92 |
+
"step": 7000
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.15,
|
96 |
+
"learning_rate": 4.885681029286442e-06,
|
97 |
+
"loss": 0.0644,
|
98 |
+
"step": 7500
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.16,
|
102 |
+
"learning_rate": 4.87528839558521e-06,
|
103 |
+
"loss": 0.0638,
|
104 |
+
"step": 8000
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.18,
|
108 |
+
"learning_rate": 4.864895761883977e-06,
|
109 |
+
"loss": 0.0627,
|
110 |
+
"step": 8500
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.19,
|
114 |
+
"learning_rate": 4.854503128182744e-06,
|
115 |
+
"loss": 0.0622,
|
116 |
+
"step": 9000
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.2,
|
120 |
+
"learning_rate": 4.844110494481512e-06,
|
121 |
+
"loss": 0.0615,
|
122 |
+
"step": 9500
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.21,
|
126 |
+
"learning_rate": 4.833717860780279e-06,
|
127 |
+
"loss": 0.061,
|
128 |
+
"step": 10000
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.22,
|
132 |
+
"learning_rate": 4.823325227079046e-06,
|
133 |
+
"loss": 0.0607,
|
134 |
+
"step": 10500
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.23,
|
138 |
+
"learning_rate": 4.812932593377814e-06,
|
139 |
+
"loss": 0.0603,
|
140 |
+
"step": 11000
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.24,
|
144 |
+
"learning_rate": 4.802539959676581e-06,
|
145 |
+
"loss": 0.0597,
|
146 |
+
"step": 11500
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.25,
|
150 |
+
"learning_rate": 4.792147325975349e-06,
|
151 |
+
"loss": 0.0593,
|
152 |
+
"step": 12000
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.26,
|
156 |
+
"learning_rate": 4.781754692274117e-06,
|
157 |
+
"loss": 0.0588,
|
158 |
+
"step": 12500
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.27,
|
162 |
+
"learning_rate": 4.771362058572884e-06,
|
163 |
+
"loss": 0.0587,
|
164 |
+
"step": 13000
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.28,
|
168 |
+
"learning_rate": 4.760969424871652e-06,
|
169 |
+
"loss": 0.058,
|
170 |
+
"step": 13500
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.29,
|
174 |
+
"learning_rate": 4.750576791170419e-06,
|
175 |
+
"loss": 0.0578,
|
176 |
+
"step": 14000
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.3,
|
180 |
+
"learning_rate": 4.740184157469187e-06,
|
181 |
+
"loss": 0.0574,
|
182 |
+
"step": 14500
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.31,
|
186 |
+
"learning_rate": 4.729791523767954e-06,
|
187 |
+
"loss": 0.0572,
|
188 |
+
"step": 15000
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.32,
|
192 |
+
"learning_rate": 4.719398890066721e-06,
|
193 |
+
"loss": 0.0566,
|
194 |
+
"step": 15500
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.33,
|
198 |
+
"learning_rate": 4.709006256365489e-06,
|
199 |
+
"loss": 0.0566,
|
200 |
+
"step": 16000
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.34,
|
204 |
+
"learning_rate": 4.698613622664256e-06,
|
205 |
+
"loss": 0.0562,
|
206 |
+
"step": 16500
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.35,
|
210 |
+
"learning_rate": 4.688220988963023e-06,
|
211 |
+
"loss": 0.0555,
|
212 |
+
"step": 17000
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.36,
|
216 |
+
"learning_rate": 4.677828355261791e-06,
|
217 |
+
"loss": 0.0554,
|
218 |
+
"step": 17500
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.37,
|
222 |
+
"learning_rate": 4.667435721560558e-06,
|
223 |
+
"loss": 0.0559,
|
224 |
+
"step": 18000
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.38,
|
228 |
+
"learning_rate": 4.657043087859326e-06,
|
229 |
+
"loss": 0.0553,
|
230 |
+
"step": 18500
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.39,
|
234 |
+
"learning_rate": 4.646650454158093e-06,
|
235 |
+
"loss": 0.0548,
|
236 |
+
"step": 19000
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.4,
|
240 |
+
"learning_rate": 4.636257820456861e-06,
|
241 |
+
"loss": 0.0548,
|
242 |
+
"step": 19500
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.41,
|
246 |
+
"learning_rate": 4.6258651867556285e-06,
|
247 |
+
"loss": 0.0544,
|
248 |
+
"step": 20000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.42,
|
252 |
+
"learning_rate": 4.6154725530543956e-06,
|
253 |
+
"loss": 0.0542,
|
254 |
+
"step": 20500
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.43,
|
258 |
+
"learning_rate": 4.6050799193531635e-06,
|
259 |
+
"loss": 0.0542,
|
260 |
+
"step": 21000
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.44,
|
264 |
+
"learning_rate": 4.5946872856519305e-06,
|
265 |
+
"loss": 0.0539,
|
266 |
+
"step": 21500
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.45,
|
270 |
+
"learning_rate": 4.5842946519506976e-06,
|
271 |
+
"loss": 0.0538,
|
272 |
+
"step": 22000
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.46,
|
276 |
+
"learning_rate": 4.5739020182494655e-06,
|
277 |
+
"loss": 0.0535,
|
278 |
+
"step": 22500
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.47,
|
282 |
+
"learning_rate": 4.5635093845482325e-06,
|
283 |
+
"loss": 0.0534,
|
284 |
+
"step": 23000
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.48,
|
288 |
+
"learning_rate": 4.5531167508469996e-06,
|
289 |
+
"loss": 0.0535,
|
290 |
+
"step": 23500
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.49,
|
294 |
+
"learning_rate": 4.5427241171457675e-06,
|
295 |
+
"loss": 0.0533,
|
296 |
+
"step": 24000
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.51,
|
300 |
+
"learning_rate": 4.5323314834445345e-06,
|
301 |
+
"loss": 0.053,
|
302 |
+
"step": 24500
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.52,
|
306 |
+
"learning_rate": 4.521938849743302e-06,
|
307 |
+
"loss": 0.0529,
|
308 |
+
"step": 25000
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.53,
|
312 |
+
"learning_rate": 4.5115462160420694e-06,
|
313 |
+
"loss": 0.0527,
|
314 |
+
"step": 25500
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.54,
|
318 |
+
"learning_rate": 4.501153582340837e-06,
|
319 |
+
"loss": 0.0524,
|
320 |
+
"step": 26000
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.55,
|
324 |
+
"learning_rate": 4.490760948639604e-06,
|
325 |
+
"loss": 0.052,
|
326 |
+
"step": 26500
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.56,
|
330 |
+
"learning_rate": 4.480368314938372e-06,
|
331 |
+
"loss": 0.0522,
|
332 |
+
"step": 27000
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.57,
|
336 |
+
"learning_rate": 4.469975681237139e-06,
|
337 |
+
"loss": 0.0522,
|
338 |
+
"step": 27500
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.58,
|
342 |
+
"learning_rate": 4.459583047535907e-06,
|
343 |
+
"loss": 0.0519,
|
344 |
+
"step": 28000
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.59,
|
348 |
+
"learning_rate": 4.449190413834674e-06,
|
349 |
+
"loss": 0.0521,
|
350 |
+
"step": 28500
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.6,
|
354 |
+
"learning_rate": 4.438797780133442e-06,
|
355 |
+
"loss": 0.0518,
|
356 |
+
"step": 29000
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.61,
|
360 |
+
"learning_rate": 4.428405146432209e-06,
|
361 |
+
"loss": 0.0515,
|
362 |
+
"step": 29500
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.62,
|
366 |
+
"learning_rate": 4.418012512730976e-06,
|
367 |
+
"loss": 0.0514,
|
368 |
+
"step": 30000
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.63,
|
372 |
+
"learning_rate": 4.407619879029744e-06,
|
373 |
+
"loss": 0.0511,
|
374 |
+
"step": 30500
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.64,
|
378 |
+
"learning_rate": 4.397227245328511e-06,
|
379 |
+
"loss": 0.0512,
|
380 |
+
"step": 31000
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.65,
|
384 |
+
"learning_rate": 4.386834611627279e-06,
|
385 |
+
"loss": 0.0509,
|
386 |
+
"step": 31500
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.66,
|
390 |
+
"learning_rate": 4.376441977926046e-06,
|
391 |
+
"loss": 0.0513,
|
392 |
+
"step": 32000
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.67,
|
396 |
+
"learning_rate": 4.366049344224814e-06,
|
397 |
+
"loss": 0.0507,
|
398 |
+
"step": 32500
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.68,
|
402 |
+
"learning_rate": 4.355656710523581e-06,
|
403 |
+
"loss": 0.0506,
|
404 |
+
"step": 33000
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.69,
|
408 |
+
"learning_rate": 4.345264076822349e-06,
|
409 |
+
"loss": 0.0503,
|
410 |
+
"step": 33500
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.7,
|
414 |
+
"learning_rate": 4.334871443121116e-06,
|
415 |
+
"loss": 0.0501,
|
416 |
+
"step": 34000
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.71,
|
420 |
+
"learning_rate": 4.324478809419884e-06,
|
421 |
+
"loss": 0.0502,
|
422 |
+
"step": 34500
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.72,
|
426 |
+
"learning_rate": 4.314086175718651e-06,
|
427 |
+
"loss": 0.0505,
|
428 |
+
"step": 35000
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.73,
|
432 |
+
"learning_rate": 4.303693542017419e-06,
|
433 |
+
"loss": 0.0505,
|
434 |
+
"step": 35500
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.74,
|
438 |
+
"learning_rate": 4.293300908316186e-06,
|
439 |
+
"loss": 0.0501,
|
440 |
+
"step": 36000
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.75,
|
444 |
+
"learning_rate": 4.282908274614953e-06,
|
445 |
+
"loss": 0.05,
|
446 |
+
"step": 36500
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.76,
|
450 |
+
"learning_rate": 4.272515640913721e-06,
|
451 |
+
"loss": 0.05,
|
452 |
+
"step": 37000
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.77,
|
456 |
+
"learning_rate": 4.262123007212488e-06,
|
457 |
+
"loss": 0.0498,
|
458 |
+
"step": 37500
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.78,
|
462 |
+
"learning_rate": 4.251730373511256e-06,
|
463 |
+
"loss": 0.0498,
|
464 |
+
"step": 38000
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.79,
|
468 |
+
"learning_rate": 4.241337739810023e-06,
|
469 |
+
"loss": 0.0496,
|
470 |
+
"step": 38500
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.8,
|
474 |
+
"learning_rate": 4.23094510610879e-06,
|
475 |
+
"loss": 0.0496,
|
476 |
+
"step": 39000
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.81,
|
480 |
+
"learning_rate": 4.220552472407558e-06,
|
481 |
+
"loss": 0.0493,
|
482 |
+
"step": 39500
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.82,
|
486 |
+
"learning_rate": 4.210159838706326e-06,
|
487 |
+
"loss": 0.0495,
|
488 |
+
"step": 40000
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.83,
|
492 |
+
"learning_rate": 4.199767205005093e-06,
|
493 |
+
"loss": 0.049,
|
494 |
+
"step": 40500
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.85,
|
498 |
+
"learning_rate": 4.189374571303861e-06,
|
499 |
+
"loss": 0.0493,
|
500 |
+
"step": 41000
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.86,
|
504 |
+
"learning_rate": 4.178981937602628e-06,
|
505 |
+
"loss": 0.0491,
|
506 |
+
"step": 41500
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.87,
|
510 |
+
"learning_rate": 4.1685893039013956e-06,
|
511 |
+
"loss": 0.0492,
|
512 |
+
"step": 42000
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.88,
|
516 |
+
"learning_rate": 4.158196670200163e-06,
|
517 |
+
"loss": 0.0492,
|
518 |
+
"step": 42500
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.89,
|
522 |
+
"learning_rate": 4.14780403649893e-06,
|
523 |
+
"loss": 0.0487,
|
524 |
+
"step": 43000
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.9,
|
528 |
+
"learning_rate": 4.1374114027976976e-06,
|
529 |
+
"loss": 0.049,
|
530 |
+
"step": 43500
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.91,
|
534 |
+
"learning_rate": 4.127018769096465e-06,
|
535 |
+
"loss": 0.0487,
|
536 |
+
"step": 44000
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.92,
|
540 |
+
"learning_rate": 4.116626135395232e-06,
|
541 |
+
"loss": 0.0489,
|
542 |
+
"step": 44500
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.93,
|
546 |
+
"learning_rate": 4.1062335016939995e-06,
|
547 |
+
"loss": 0.0485,
|
548 |
+
"step": 45000
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.94,
|
552 |
+
"learning_rate": 4.095840867992767e-06,
|
553 |
+
"loss": 0.0486,
|
554 |
+
"step": 45500
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.95,
|
558 |
+
"learning_rate": 4.0854482342915345e-06,
|
559 |
+
"loss": 0.0485,
|
560 |
+
"step": 46000
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.96,
|
564 |
+
"learning_rate": 4.0750556005903015e-06,
|
565 |
+
"loss": 0.0487,
|
566 |
+
"step": 46500
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.97,
|
570 |
+
"learning_rate": 4.0646629668890694e-06,
|
571 |
+
"loss": 0.0482,
|
572 |
+
"step": 47000
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.98,
|
576 |
+
"learning_rate": 4.054270333187837e-06,
|
577 |
+
"loss": 0.0482,
|
578 |
+
"step": 47500
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.99,
|
582 |
+
"learning_rate": 4.043877699486604e-06,
|
583 |
+
"loss": 0.0481,
|
584 |
+
"step": 48000
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 1.0,
|
588 |
+
"learning_rate": 4.033485065785372e-06,
|
589 |
+
"loss": 0.0481,
|
590 |
+
"step": 48500
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.0,
|
594 |
+
"eval_loss": 0.04874278977513313,
|
595 |
+
"eval_runtime": 1479.0093,
|
596 |
+
"eval_samples_per_second": 13.382,
|
597 |
+
"eval_steps_per_second": 0.836,
|
598 |
+
"step": 48511
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 1.01,
|
602 |
+
"learning_rate": 4.023092432084139e-06,
|
603 |
+
"loss": 0.0479,
|
604 |
+
"step": 49000
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.02,
|
608 |
+
"learning_rate": 4.012699798382906e-06,
|
609 |
+
"loss": 0.0478,
|
610 |
+
"step": 49500
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"epoch": 1.03,
|
614 |
+
"learning_rate": 4.002307164681674e-06,
|
615 |
+
"loss": 0.048,
|
616 |
+
"step": 50000
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 1.04,
|
620 |
+
"learning_rate": 3.991914530980441e-06,
|
621 |
+
"loss": 0.0477,
|
622 |
+
"step": 50500
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 1.05,
|
626 |
+
"learning_rate": 3.981521897279208e-06,
|
627 |
+
"loss": 0.0478,
|
628 |
+
"step": 51000
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"epoch": 1.06,
|
632 |
+
"learning_rate": 3.971129263577976e-06,
|
633 |
+
"loss": 0.0476,
|
634 |
+
"step": 51500
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 1.07,
|
638 |
+
"learning_rate": 3.960736629876743e-06,
|
639 |
+
"loss": 0.0475,
|
640 |
+
"step": 52000
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 1.08,
|
644 |
+
"learning_rate": 3.950343996175511e-06,
|
645 |
+
"loss": 0.0473,
|
646 |
+
"step": 52500
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.09,
|
650 |
+
"learning_rate": 3.939951362474278e-06,
|
651 |
+
"loss": 0.0477,
|
652 |
+
"step": 53000
|
653 |
+
},
|
654 |
+
{
|
655 |
+
"epoch": 1.1,
|
656 |
+
"learning_rate": 3.929558728773046e-06,
|
657 |
+
"loss": 0.0472,
|
658 |
+
"step": 53500
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"epoch": 1.11,
|
662 |
+
"learning_rate": 3.919166095071813e-06,
|
663 |
+
"loss": 0.0471,
|
664 |
+
"step": 54000
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 1.12,
|
668 |
+
"learning_rate": 3.908773461370581e-06,
|
669 |
+
"loss": 0.0472,
|
670 |
+
"step": 54500
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 1.13,
|
674 |
+
"learning_rate": 3.898380827669349e-06,
|
675 |
+
"loss": 0.0472,
|
676 |
+
"step": 55000
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 1.14,
|
680 |
+
"learning_rate": 3.887988193968116e-06,
|
681 |
+
"loss": 0.0471,
|
682 |
+
"step": 55500
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 1.15,
|
686 |
+
"learning_rate": 3.877595560266883e-06,
|
687 |
+
"loss": 0.0472,
|
688 |
+
"step": 56000
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.16,
|
692 |
+
"learning_rate": 3.867202926565651e-06,
|
693 |
+
"loss": 0.0471,
|
694 |
+
"step": 56500
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 1.17,
|
698 |
+
"learning_rate": 3.856810292864418e-06,
|
699 |
+
"loss": 0.047,
|
700 |
+
"step": 57000
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 1.19,
|
704 |
+
"learning_rate": 3.846417659163185e-06,
|
705 |
+
"loss": 0.0472,
|
706 |
+
"step": 57500
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 1.2,
|
710 |
+
"learning_rate": 3.836025025461953e-06,
|
711 |
+
"loss": 0.0471,
|
712 |
+
"step": 58000
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 1.21,
|
716 |
+
"learning_rate": 3.82563239176072e-06,
|
717 |
+
"loss": 0.0468,
|
718 |
+
"step": 58500
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 1.22,
|
722 |
+
"learning_rate": 3.815239758059488e-06,
|
723 |
+
"loss": 0.047,
|
724 |
+
"step": 59000
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 1.23,
|
728 |
+
"learning_rate": 3.8048471243582554e-06,
|
729 |
+
"loss": 0.0467,
|
730 |
+
"step": 59500
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.24,
|
734 |
+
"learning_rate": 3.7944544906570224e-06,
|
735 |
+
"loss": 0.0465,
|
736 |
+
"step": 60000
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 1.25,
|
740 |
+
"learning_rate": 3.7840618569557903e-06,
|
741 |
+
"loss": 0.0467,
|
742 |
+
"step": 60500
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"epoch": 1.26,
|
746 |
+
"learning_rate": 3.7736692232545574e-06,
|
747 |
+
"loss": 0.0465,
|
748 |
+
"step": 61000
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 1.27,
|
752 |
+
"learning_rate": 3.763276589553325e-06,
|
753 |
+
"loss": 0.0467,
|
754 |
+
"step": 61500
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 1.28,
|
758 |
+
"learning_rate": 3.7528839558520923e-06,
|
759 |
+
"loss": 0.0468,
|
760 |
+
"step": 62000
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 1.29,
|
764 |
+
"learning_rate": 3.7424913221508598e-06,
|
765 |
+
"loss": 0.0469,
|
766 |
+
"step": 62500
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 1.3,
|
770 |
+
"learning_rate": 3.7320986884496272e-06,
|
771 |
+
"loss": 0.0465,
|
772 |
+
"step": 63000
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 1.31,
|
776 |
+
"learning_rate": 3.7217060547483947e-06,
|
777 |
+
"loss": 0.0462,
|
778 |
+
"step": 63500
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"epoch": 1.32,
|
782 |
+
"learning_rate": 3.7113134210471618e-06,
|
783 |
+
"loss": 0.0467,
|
784 |
+
"step": 64000
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"epoch": 1.33,
|
788 |
+
"learning_rate": 3.7009207873459297e-06,
|
789 |
+
"loss": 0.0465,
|
790 |
+
"step": 64500
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 1.34,
|
794 |
+
"learning_rate": 3.6905281536446967e-06,
|
795 |
+
"loss": 0.0464,
|
796 |
+
"step": 65000
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 1.35,
|
800 |
+
"learning_rate": 3.6801355199434646e-06,
|
801 |
+
"loss": 0.0465,
|
802 |
+
"step": 65500
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 1.36,
|
806 |
+
"learning_rate": 3.6697428862422316e-06,
|
807 |
+
"loss": 0.0465,
|
808 |
+
"step": 66000
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 1.37,
|
812 |
+
"learning_rate": 3.659350252540999e-06,
|
813 |
+
"loss": 0.0463,
|
814 |
+
"step": 66500
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 1.38,
|
818 |
+
"learning_rate": 3.648957618839767e-06,
|
819 |
+
"loss": 0.0461,
|
820 |
+
"step": 67000
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 1.39,
|
824 |
+
"learning_rate": 3.638564985138534e-06,
|
825 |
+
"loss": 0.0461,
|
826 |
+
"step": 67500
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 1.4,
|
830 |
+
"learning_rate": 3.628172351437301e-06,
|
831 |
+
"loss": 0.0462,
|
832 |
+
"step": 68000
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 1.41,
|
836 |
+
"learning_rate": 3.617779717736069e-06,
|
837 |
+
"loss": 0.0459,
|
838 |
+
"step": 68500
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 1.42,
|
842 |
+
"learning_rate": 3.6073870840348365e-06,
|
843 |
+
"loss": 0.0462,
|
844 |
+
"step": 69000
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 1.43,
|
848 |
+
"learning_rate": 3.596994450333604e-06,
|
849 |
+
"loss": 0.0459,
|
850 |
+
"step": 69500
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 1.44,
|
854 |
+
"learning_rate": 3.5866018166323714e-06,
|
855 |
+
"loss": 0.0459,
|
856 |
+
"step": 70000
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.45,
|
860 |
+
"learning_rate": 3.5762091829311385e-06,
|
861 |
+
"loss": 0.0457,
|
862 |
+
"step": 70500
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"epoch": 1.46,
|
866 |
+
"learning_rate": 3.5658165492299064e-06,
|
867 |
+
"loss": 0.0457,
|
868 |
+
"step": 71000
|
869 |
+
},
|
870 |
+
{
|
871 |
+
"epoch": 1.47,
|
872 |
+
"learning_rate": 3.5554239155286734e-06,
|
873 |
+
"loss": 0.0456,
|
874 |
+
"step": 71500
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 1.48,
|
878 |
+
"learning_rate": 3.5450312818274413e-06,
|
879 |
+
"loss": 0.0457,
|
880 |
+
"step": 72000
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 1.49,
|
884 |
+
"learning_rate": 3.5346386481262083e-06,
|
885 |
+
"loss": 0.0461,
|
886 |
+
"step": 72500
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 1.5,
|
890 |
+
"learning_rate": 3.524246014424976e-06,
|
891 |
+
"loss": 0.046,
|
892 |
+
"step": 73000
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 1.52,
|
896 |
+
"learning_rate": 3.5138533807237433e-06,
|
897 |
+
"loss": 0.0456,
|
898 |
+
"step": 73500
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.53,
|
902 |
+
"learning_rate": 3.5034607470225108e-06,
|
903 |
+
"loss": 0.0456,
|
904 |
+
"step": 74000
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 1.54,
|
908 |
+
"learning_rate": 3.493068113321278e-06,
|
909 |
+
"loss": 0.0458,
|
910 |
+
"step": 74500
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 1.55,
|
914 |
+
"learning_rate": 3.4826754796200457e-06,
|
915 |
+
"loss": 0.0455,
|
916 |
+
"step": 75000
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 1.56,
|
920 |
+
"learning_rate": 3.4722828459188128e-06,
|
921 |
+
"loss": 0.0458,
|
922 |
+
"step": 75500
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 1.57,
|
926 |
+
"learning_rate": 3.4618902122175806e-06,
|
927 |
+
"loss": 0.0455,
|
928 |
+
"step": 76000
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 1.58,
|
932 |
+
"learning_rate": 3.451497578516348e-06,
|
933 |
+
"loss": 0.0459,
|
934 |
+
"step": 76500
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 1.59,
|
938 |
+
"learning_rate": 3.441104944815115e-06,
|
939 |
+
"loss": 0.0455,
|
940 |
+
"step": 77000
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.6,
|
944 |
+
"learning_rate": 3.430712311113883e-06,
|
945 |
+
"loss": 0.0457,
|
946 |
+
"step": 77500
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 1.61,
|
950 |
+
"learning_rate": 3.42031967741265e-06,
|
951 |
+
"loss": 0.0456,
|
952 |
+
"step": 78000
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 1.62,
|
956 |
+
"learning_rate": 3.409927043711417e-06,
|
957 |
+
"loss": 0.0453,
|
958 |
+
"step": 78500
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"epoch": 1.63,
|
962 |
+
"learning_rate": 3.399534410010185e-06,
|
963 |
+
"loss": 0.0454,
|
964 |
+
"step": 79000
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 1.64,
|
968 |
+
"learning_rate": 3.3891417763089525e-06,
|
969 |
+
"loss": 0.0453,
|
970 |
+
"step": 79500
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 1.65,
|
974 |
+
"learning_rate": 3.37874914260772e-06,
|
975 |
+
"loss": 0.0455,
|
976 |
+
"step": 80000
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 1.66,
|
980 |
+
"learning_rate": 3.3683565089064875e-06,
|
981 |
+
"loss": 0.0453,
|
982 |
+
"step": 80500
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.67,
|
986 |
+
"learning_rate": 3.3579638752052545e-06,
|
987 |
+
"loss": 0.0455,
|
988 |
+
"step": 81000
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"epoch": 1.68,
|
992 |
+
"learning_rate": 3.3475712415040224e-06,
|
993 |
+
"loss": 0.0451,
|
994 |
+
"step": 81500
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 1.69,
|
998 |
+
"learning_rate": 3.3371786078027895e-06,
|
999 |
+
"loss": 0.0448,
|
1000 |
+
"step": 82000
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"epoch": 1.7,
|
1004 |
+
"learning_rate": 3.3267859741015574e-06,
|
1005 |
+
"loss": 0.0453,
|
1006 |
+
"step": 82500
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 1.71,
|
1010 |
+
"learning_rate": 3.3163933404003244e-06,
|
1011 |
+
"loss": 0.045,
|
1012 |
+
"step": 83000
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 1.72,
|
1016 |
+
"learning_rate": 3.306000706699092e-06,
|
1017 |
+
"loss": 0.045,
|
1018 |
+
"step": 83500
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 1.73,
|
1022 |
+
"learning_rate": 3.2956080729978598e-06,
|
1023 |
+
"loss": 0.0453,
|
1024 |
+
"step": 84000
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.74,
|
1028 |
+
"learning_rate": 3.285215439296627e-06,
|
1029 |
+
"loss": 0.045,
|
1030 |
+
"step": 84500
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"epoch": 1.75,
|
1034 |
+
"learning_rate": 3.274822805595394e-06,
|
1035 |
+
"loss": 0.0454,
|
1036 |
+
"step": 85000
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 1.76,
|
1040 |
+
"learning_rate": 3.2644301718941618e-06,
|
1041 |
+
"loss": 0.045,
|
1042 |
+
"step": 85500
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 1.77,
|
1046 |
+
"learning_rate": 3.254037538192929e-06,
|
1047 |
+
"loss": 0.0449,
|
1048 |
+
"step": 86000
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 1.78,
|
1052 |
+
"learning_rate": 3.2436449044916967e-06,
|
1053 |
+
"loss": 0.045,
|
1054 |
+
"step": 86500
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 1.79,
|
1058 |
+
"learning_rate": 3.233252270790464e-06,
|
1059 |
+
"loss": 0.0448,
|
1060 |
+
"step": 87000
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 1.8,
|
1064 |
+
"learning_rate": 3.2228596370892312e-06,
|
1065 |
+
"loss": 0.0449,
|
1066 |
+
"step": 87500
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.81,
|
1070 |
+
"learning_rate": 3.212467003387999e-06,
|
1071 |
+
"loss": 0.0446,
|
1072 |
+
"step": 88000
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"epoch": 1.82,
|
1076 |
+
"learning_rate": 3.202074369686766e-06,
|
1077 |
+
"loss": 0.045,
|
1078 |
+
"step": 88500
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"epoch": 1.83,
|
1082 |
+
"learning_rate": 3.191681735985534e-06,
|
1083 |
+
"loss": 0.0449,
|
1084 |
+
"step": 89000
|
1085 |
+
},
|
1086 |
+
{
|
1087 |
+
"epoch": 1.84,
|
1088 |
+
"learning_rate": 3.181289102284301e-06,
|
1089 |
+
"loss": 0.0446,
|
1090 |
+
"step": 89500
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 1.86,
|
1094 |
+
"learning_rate": 3.1708964685830686e-06,
|
1095 |
+
"loss": 0.0445,
|
1096 |
+
"step": 90000
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 1.87,
|
1100 |
+
"learning_rate": 3.160503834881836e-06,
|
1101 |
+
"loss": 0.0448,
|
1102 |
+
"step": 90500
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 1.88,
|
1106 |
+
"learning_rate": 3.1501112011806035e-06,
|
1107 |
+
"loss": 0.0445,
|
1108 |
+
"step": 91000
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.89,
|
1112 |
+
"learning_rate": 3.1397185674793706e-06,
|
1113 |
+
"loss": 0.0447,
|
1114 |
+
"step": 91500
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 1.9,
|
1118 |
+
"learning_rate": 3.1293259337781385e-06,
|
1119 |
+
"loss": 0.0446,
|
1120 |
+
"step": 92000
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"epoch": 1.91,
|
1124 |
+
"learning_rate": 3.1189333000769055e-06,
|
1125 |
+
"loss": 0.0449,
|
1126 |
+
"step": 92500
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"epoch": 1.92,
|
1130 |
+
"learning_rate": 3.1085406663756734e-06,
|
1131 |
+
"loss": 0.0446,
|
1132 |
+
"step": 93000
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 1.93,
|
1136 |
+
"learning_rate": 3.0981480326744404e-06,
|
1137 |
+
"loss": 0.0442,
|
1138 |
+
"step": 93500
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"epoch": 1.94,
|
1142 |
+
"learning_rate": 3.087755398973208e-06,
|
1143 |
+
"loss": 0.0445,
|
1144 |
+
"step": 94000
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 1.95,
|
1148 |
+
"learning_rate": 3.077362765271976e-06,
|
1149 |
+
"loss": 0.0444,
|
1150 |
+
"step": 94500
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 1.96,
|
1154 |
+
"learning_rate": 3.066970131570743e-06,
|
1155 |
+
"loss": 0.0444,
|
1156 |
+
"step": 95000
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 1.97,
|
1160 |
+
"learning_rate": 3.05657749786951e-06,
|
1161 |
+
"loss": 0.0444,
|
1162 |
+
"step": 95500
|
1163 |
+
},
|
1164 |
+
{
|
1165 |
+
"epoch": 1.98,
|
1166 |
+
"learning_rate": 3.046184864168278e-06,
|
1167 |
+
"loss": 0.0444,
|
1168 |
+
"step": 96000
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"epoch": 1.99,
|
1172 |
+
"learning_rate": 3.0357922304670453e-06,
|
1173 |
+
"loss": 0.0446,
|
1174 |
+
"step": 96500
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 2.0,
|
1178 |
+
"learning_rate": 3.0253995967658127e-06,
|
1179 |
+
"loss": 0.0443,
|
1180 |
+
"step": 97000
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"epoch": 2.0,
|
1184 |
+
"eval_loss": 0.04501689225435257,
|
1185 |
+
"eval_runtime": 1478.7113,
|
1186 |
+
"eval_samples_per_second": 13.385,
|
1187 |
+
"eval_steps_per_second": 0.837,
|
1188 |
+
"step": 97022
|
1189 |
+
}
|
1190 |
+
],
|
1191 |
+
"max_steps": 242555,
|
1192 |
+
"num_train_epochs": 5,
|
1193 |
+
"total_flos": 1.1940942833642373e+18,
|
1194 |
+
"trial_name": null,
|
1195 |
+
"trial_params": null
|
1196 |
+
}
|
model/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51ee1474c90d834df17eec7e46d87cc82f364065cbe182dd8829d6f16c838280
|
3 |
+
size 2735
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy>=1.16.4
|
2 |
+
textwrap3==0.9.2
|
3 |
+
Pillow==8.0.1
|
4 |
+
transformers==4.8.0
|
5 |
+
gradio>=2.0.7
|
6 |
+
shapely==1.7.1
|
7 |
+
aggdraw==1.3.12
|
8 |
+
torch==1.7.1
|