Spaces:
Running
Running
<script lang="ts"> | |
import * as ort from 'onnxruntime-web'; | |
import { AutoModel, AutoTokenizer } from '@huggingface/transformers'; | |
import { onMount, getContext } from 'svelte'; | |
import { models } from '$lib/stores'; | |
import Spinner from '$lib/components/common/Spinner.svelte'; | |
import Tooltip from '$lib/components/common/Tooltip.svelte'; | |
import MagnifyingGlass from '$lib/components/icons/MagnifyingGlass.svelte'; | |
const i18n = getContext('i18n'); | |
const EMBEDDING_MODEL = 'TaylorAI/bge-micro-v2'; | |
let tokenizer = null; | |
let model = null; | |
export let feedbacks = []; | |
let rankedModels = []; | |
let query = ''; | |
let tagEmbeddings = new Map(); | |
let loadingLeaderboard = true; | |
let debounceTimer; | |
type Feedback = { | |
id: string; | |
data: { | |
rating: number; | |
model_id: string; | |
sibling_model_ids: string[] | null; | |
reason: string; | |
comment: string; | |
tags: string[]; | |
}; | |
user: { | |
name: string; | |
profile_image_url: string; | |
}; | |
updated_at: number; | |
}; | |
type ModelStats = { | |
rating: number; | |
won: number; | |
lost: number; | |
}; | |
////////////////////// | |
// | |
// Rank models by Elo rating | |
// | |
////////////////////// | |
const rankHandler = async (similarities: Map<string, number> = new Map()) => { | |
const modelStats = calculateModelStats(feedbacks, similarities); | |
rankedModels = $models | |
.filter((m) => m?.owned_by !== 'arena' && (m?.info?.meta?.hidden ?? false) !== true) | |
.map((model) => { | |
const stats = modelStats.get(model.id); | |
return { | |
...model, | |
rating: stats ? Math.round(stats.rating) : '-', | |
stats: { | |
count: stats ? stats.won + stats.lost : 0, | |
won: stats ? stats.won.toString() : '-', | |
lost: stats ? stats.lost.toString() : '-' | |
} | |
}; | |
}) | |
.sort((a, b) => { | |
if (a.rating === '-' && b.rating !== '-') return 1; | |
if (b.rating === '-' && a.rating !== '-') return -1; | |
if (a.rating !== '-' && b.rating !== '-') return b.rating - a.rating; | |
return a.name.localeCompare(b.name); | |
}); | |
loadingLeaderboard = false; | |
}; | |
function calculateModelStats( | |
feedbacks: Feedback[], | |
similarities: Map<string, number> | |
): Map<string, ModelStats> { | |
const stats = new Map<string, ModelStats>(); | |
const K = 32; | |
function getOrDefaultStats(modelId: string): ModelStats { | |
return stats.get(modelId) || { rating: 1000, won: 0, lost: 0 }; | |
} | |
function updateStats(modelId: string, ratingChange: number, outcome: number) { | |
const currentStats = getOrDefaultStats(modelId); | |
currentStats.rating += ratingChange; | |
if (outcome === 1) currentStats.won++; | |
else if (outcome === 0) currentStats.lost++; | |
stats.set(modelId, currentStats); | |
} | |
function calculateEloChange( | |
ratingA: number, | |
ratingB: number, | |
outcome: number, | |
similarity: number | |
): number { | |
const expectedScore = 1 / (1 + Math.pow(10, (ratingB - ratingA) / 400)); | |
return K * (outcome - expectedScore) * similarity; | |
} | |
feedbacks.forEach((feedback) => { | |
const modelA = feedback.data.model_id; | |
const statsA = getOrDefaultStats(modelA); | |
let outcome: number; | |
switch (feedback.data.rating.toString()) { | |
case '1': | |
outcome = 1; | |
break; | |
case '-1': | |
outcome = 0; | |
break; | |
default: | |
return; // Skip invalid ratings | |
} | |
// If the query is empty, set similarity to 1, else get the similarity from the map | |
const similarity = query !== '' ? similarities.get(feedback.id) || 0 : 1; | |
const opponents = feedback.data.sibling_model_ids || []; | |
opponents.forEach((modelB) => { | |
const statsB = getOrDefaultStats(modelB); | |
const changeA = calculateEloChange(statsA.rating, statsB.rating, outcome, similarity); | |
const changeB = calculateEloChange(statsB.rating, statsA.rating, 1 - outcome, similarity); | |
updateStats(modelA, changeA, outcome); | |
updateStats(modelB, changeB, 1 - outcome); | |
}); | |
}); | |
return stats; | |
} | |
////////////////////// | |
// | |
// Calculate cosine similarity | |
// | |
////////////////////// | |
const cosineSimilarity = (vecA, vecB) => { | |
// Ensure the lengths of the vectors are the same | |
if (vecA.length !== vecB.length) { | |
throw new Error('Vectors must be the same length'); | |
} | |
// Calculate the dot product | |
let dotProduct = 0; | |
let normA = 0; | |
let normB = 0; | |
for (let i = 0; i < vecA.length; i++) { | |
dotProduct += vecA[i] * vecB[i]; | |
normA += vecA[i] ** 2; | |
normB += vecB[i] ** 2; | |
} | |
// Calculate the magnitudes | |
normA = Math.sqrt(normA); | |
normB = Math.sqrt(normB); | |
// Avoid division by zero | |
if (normA === 0 || normB === 0) { | |
return 0; | |
} | |
// Return the cosine similarity | |
return dotProduct / (normA * normB); | |
}; | |
const calculateMaxSimilarity = (queryEmbedding, tagEmbeddings: Map<string, number[]>) => { | |
let maxSimilarity = 0; | |
for (const tagEmbedding of tagEmbeddings.values()) { | |
const similarity = cosineSimilarity(queryEmbedding, tagEmbedding); | |
maxSimilarity = Math.max(maxSimilarity, similarity); | |
} | |
return maxSimilarity; | |
}; | |
////////////////////// | |
// | |
// Embedding functions | |
// | |
////////////////////// | |
const loadEmbeddingModel = async () => { | |
// Check if the tokenizer and model are already loaded and stored in the window object | |
if (!window.tokenizer) { | |
window.tokenizer = await AutoTokenizer.from_pretrained(EMBEDDING_MODEL); | |
} | |
if (!window.model) { | |
window.model = await AutoModel.from_pretrained(EMBEDDING_MODEL); | |
} | |
// Use the tokenizer and model from the window object | |
tokenizer = window.tokenizer; | |
model = window.model; | |
// Pre-compute embeddings for all unique tags | |
const allTags = new Set(feedbacks.flatMap((feedback) => feedback.data.tags || [])); | |
await getTagEmbeddings(Array.from(allTags)); | |
}; | |
const getEmbeddings = async (text: string) => { | |
const tokens = await tokenizer(text); | |
const output = await model(tokens); | |
// Perform mean pooling on the last hidden states | |
const embeddings = output.last_hidden_state.mean(1); | |
return embeddings.ort_tensor.data; | |
}; | |
const getTagEmbeddings = async (tags: string[]) => { | |
const embeddings = new Map(); | |
for (const tag of tags) { | |
if (!tagEmbeddings.has(tag)) { | |
tagEmbeddings.set(tag, await getEmbeddings(tag)); | |
} | |
embeddings.set(tag, tagEmbeddings.get(tag)); | |
} | |
return embeddings; | |
}; | |
const debouncedQueryHandler = async () => { | |
loadingLeaderboard = true; | |
if (query.trim() === '') { | |
rankHandler(); | |
return; | |
} | |
clearTimeout(debounceTimer); | |
debounceTimer = setTimeout(async () => { | |
const queryEmbedding = await getEmbeddings(query); | |
const similarities = new Map<string, number>(); | |
for (const feedback of feedbacks) { | |
const feedbackTags = feedback.data.tags || []; | |
const tagEmbeddings = await getTagEmbeddings(feedbackTags); | |
const maxSimilarity = calculateMaxSimilarity(queryEmbedding, tagEmbeddings); | |
similarities.set(feedback.id, maxSimilarity); | |
} | |
rankHandler(similarities); | |
}, 1500); // Debounce for 1.5 seconds | |
}; | |
$: query, debouncedQueryHandler(); | |
onMount(async () => { | |
rankHandler(); | |
}); | |
</script> | |
<div class="mt-0.5 mb-2 gap-1 flex flex-col md:flex-row justify-between"> | |
<div class="flex md:self-center text-lg font-medium px-0.5 shrink-0 items-center"> | |
<div class=" gap-1"> | |
{$i18n.t('Leaderboard')} | |
</div> | |
<div class="flex self-center w-[1px] h-6 mx-2.5 bg-gray-50 dark:bg-gray-850" /> | |
<span class="text-lg font-medium text-gray-500 dark:text-gray-300 mr-1.5" | |
>{rankedModels.length}</span | |
> | |
</div> | |
<div class=" flex space-x-2"> | |
<Tooltip content={$i18n.t('Re-rank models by topic similarity')}> | |
<div class="flex flex-1"> | |
<div class=" self-center ml-1 mr-3"> | |
<MagnifyingGlass className="size-3" /> | |
</div> | |
<input | |
class=" w-full text-sm pr-4 py-1 rounded-r-xl outline-none bg-transparent" | |
bind:value={query} | |
placeholder={$i18n.t('Search')} | |
on:focus={() => { | |
loadEmbeddingModel(); | |
}} | |
/> | |
</div> | |
</Tooltip> | |
</div> | |
</div> | |
<div class="scrollbar-hidden relative whitespace-nowrap overflow-x-auto max-w-full rounded pt-0.5"> | |
{#if loadingLeaderboard} | |
<div class=" absolute top-0 bottom-0 left-0 right-0 flex"> | |
<div class="m-auto"> | |
<Spinner /> | |
</div> | |
</div> | |
{/if} | |
{#if (rankedModels ?? []).length === 0} | |
<div class="text-center text-xs text-gray-500 dark:text-gray-400 py-1"> | |
{$i18n.t('No models found')} | |
</div> | |
{:else} | |
<table | |
class="w-full text-sm text-left text-gray-500 dark:text-gray-400 table-auto max-w-full rounded {loadingLeaderboard | |
? 'opacity-20' | |
: ''}" | |
> | |
<thead | |
class="text-xs text-gray-700 uppercase bg-gray-50 dark:bg-gray-850 dark:text-gray-400 -translate-y-0.5" | |
> | |
<tr class=""> | |
<th scope="col" class="px-3 py-1.5 cursor-pointer select-none w-3"> | |
{$i18n.t('RK')} | |
</th> | |
<th scope="col" class="px-3 py-1.5 cursor-pointer select-none"> | |
{$i18n.t('Model')} | |
</th> | |
<th scope="col" class="px-3 py-1.5 text-right cursor-pointer select-none w-fit"> | |
{$i18n.t('Rating')} | |
</th> | |
<th scope="col" class="px-3 py-1.5 text-right cursor-pointer select-none w-5"> | |
{$i18n.t('Won')} | |
</th> | |
<th scope="col" class="px-3 py-1.5 text-right cursor-pointer select-none w-5"> | |
{$i18n.t('Lost')} | |
</th> | |
</tr> | |
</thead> | |
<tbody class=""> | |
{#each rankedModels as model, modelIdx (model.id)} | |
<tr class="bg-white dark:bg-gray-900 dark:border-gray-850 text-xs group"> | |
<td class="px-3 py-1.5 text-left font-medium text-gray-900 dark:text-white w-fit"> | |
<div class=" line-clamp-1"> | |
{model?.rating !== '-' ? modelIdx + 1 : '-'} | |
</div> | |
</td> | |
<td class="px-3 py-1.5 flex flex-col justify-center"> | |
<div class="flex items-center gap-2"> | |
<div class="flex-shrink-0"> | |
<img | |
src={model?.info?.meta?.profile_image_url ?? '/favicon.png'} | |
alt={model.name} | |
class="size-5 rounded-full object-cover shrink-0" | |
/> | |
</div> | |
<div class="font-medium text-gray-800 dark:text-gray-200 pr-4"> | |
{model.name} | |
</div> | |
</div> | |
</td> | |
<td class="px-3 py-1.5 text-right font-medium text-gray-900 dark:text-white w-max"> | |
{model.rating} | |
</td> | |
<td class=" px-3 py-1.5 text-right font-semibold text-green-500"> | |
<div class=" w-10"> | |
{#if model.stats.won === '-'} | |
- | |
{:else} | |
<span class="hidden group-hover:inline" | |
>{((model.stats.won / model.stats.count) * 100).toFixed(1)}%</span | |
> | |
<span class=" group-hover:hidden">{model.stats.won}</span> | |
{/if} | |
</div> | |
</td> | |
<td class="px-3 py-1.5 text-right font-semibold text-red-500"> | |
<div class=" w-10"> | |
{#if model.stats.lost === '-'} | |
- | |
{:else} | |
<span class="hidden group-hover:inline" | |
>{((model.stats.lost / model.stats.count) * 100).toFixed(1)}%</span | |
> | |
<span class=" group-hover:hidden">{model.stats.lost}</span> | |
{/if} | |
</div> | |
</td> | |
</tr> | |
{/each} | |
</tbody> | |
</table> | |
{/if} | |
</div> | |
<div class=" text-gray-500 text-xs mt-1.5 w-full flex justify-end"> | |
<div class=" text-right"> | |
<div class="line-clamp-1"> | |
ⓘ {$i18n.t( | |
'The evaluation leaderboard is based on the Elo rating system and is updated in real-time.' | |
)} | |
</div> | |
{$i18n.t( | |
'The leaderboard is currently in beta, and we may adjust the rating calculations as we refine the algorithm.' | |
)} | |
</div> | |
</div> | |