ai / src /lib /components /admin /Evaluations /Leaderboard.svelte
github-actions[bot]
GitHub deploy: d48a234bb91a479b618f7828665bdfa45fdc349b
d836a53
<script lang="ts">
import * as ort from 'onnxruntime-web';
import { AutoModel, AutoTokenizer } from '@huggingface/transformers';
import { onMount, getContext } from 'svelte';
import { models } from '$lib/stores';
import Spinner from '$lib/components/common/Spinner.svelte';
import Tooltip from '$lib/components/common/Tooltip.svelte';
import MagnifyingGlass from '$lib/components/icons/MagnifyingGlass.svelte';
const i18n = getContext('i18n');
const EMBEDDING_MODEL = 'TaylorAI/bge-micro-v2';
let tokenizer = null;
let model = null;
export let feedbacks = [];
let rankedModels = [];
let query = '';
let tagEmbeddings = new Map();
let loadingLeaderboard = true;
let debounceTimer;
type Feedback = {
id: string;
data: {
rating: number;
model_id: string;
sibling_model_ids: string[] | null;
reason: string;
comment: string;
tags: string[];
};
user: {
name: string;
profile_image_url: string;
};
updated_at: number;
};
type ModelStats = {
rating: number;
won: number;
lost: number;
};
//////////////////////
//
// Rank models by Elo rating
//
//////////////////////
const rankHandler = async (similarities: Map<string, number> = new Map()) => {
const modelStats = calculateModelStats(feedbacks, similarities);
rankedModels = $models
.filter((m) => m?.owned_by !== 'arena' && (m?.info?.meta?.hidden ?? false) !== true)
.map((model) => {
const stats = modelStats.get(model.id);
return {
...model,
rating: stats ? Math.round(stats.rating) : '-',
stats: {
count: stats ? stats.won + stats.lost : 0,
won: stats ? stats.won.toString() : '-',
lost: stats ? stats.lost.toString() : '-'
}
};
})
.sort((a, b) => {
if (a.rating === '-' && b.rating !== '-') return 1;
if (b.rating === '-' && a.rating !== '-') return -1;
if (a.rating !== '-' && b.rating !== '-') return b.rating - a.rating;
return a.name.localeCompare(b.name);
});
loadingLeaderboard = false;
};
function calculateModelStats(
feedbacks: Feedback[],
similarities: Map<string, number>
): Map<string, ModelStats> {
const stats = new Map<string, ModelStats>();
const K = 32;
function getOrDefaultStats(modelId: string): ModelStats {
return stats.get(modelId) || { rating: 1000, won: 0, lost: 0 };
}
function updateStats(modelId: string, ratingChange: number, outcome: number) {
const currentStats = getOrDefaultStats(modelId);
currentStats.rating += ratingChange;
if (outcome === 1) currentStats.won++;
else if (outcome === 0) currentStats.lost++;
stats.set(modelId, currentStats);
}
function calculateEloChange(
ratingA: number,
ratingB: number,
outcome: number,
similarity: number
): number {
const expectedScore = 1 / (1 + Math.pow(10, (ratingB - ratingA) / 400));
return K * (outcome - expectedScore) * similarity;
}
feedbacks.forEach((feedback) => {
const modelA = feedback.data.model_id;
const statsA = getOrDefaultStats(modelA);
let outcome: number;
switch (feedback.data.rating.toString()) {
case '1':
outcome = 1;
break;
case '-1':
outcome = 0;
break;
default:
return; // Skip invalid ratings
}
// If the query is empty, set similarity to 1, else get the similarity from the map
const similarity = query !== '' ? similarities.get(feedback.id) || 0 : 1;
const opponents = feedback.data.sibling_model_ids || [];
opponents.forEach((modelB) => {
const statsB = getOrDefaultStats(modelB);
const changeA = calculateEloChange(statsA.rating, statsB.rating, outcome, similarity);
const changeB = calculateEloChange(statsB.rating, statsA.rating, 1 - outcome, similarity);
updateStats(modelA, changeA, outcome);
updateStats(modelB, changeB, 1 - outcome);
});
});
return stats;
}
//////////////////////
//
// Calculate cosine similarity
//
//////////////////////
const cosineSimilarity = (vecA, vecB) => {
// Ensure the lengths of the vectors are the same
if (vecA.length !== vecB.length) {
throw new Error('Vectors must be the same length');
}
// Calculate the dot product
let dotProduct = 0;
let normA = 0;
let normB = 0;
for (let i = 0; i < vecA.length; i++) {
dotProduct += vecA[i] * vecB[i];
normA += vecA[i] ** 2;
normB += vecB[i] ** 2;
}
// Calculate the magnitudes
normA = Math.sqrt(normA);
normB = Math.sqrt(normB);
// Avoid division by zero
if (normA === 0 || normB === 0) {
return 0;
}
// Return the cosine similarity
return dotProduct / (normA * normB);
};
const calculateMaxSimilarity = (queryEmbedding, tagEmbeddings: Map<string, number[]>) => {
let maxSimilarity = 0;
for (const tagEmbedding of tagEmbeddings.values()) {
const similarity = cosineSimilarity(queryEmbedding, tagEmbedding);
maxSimilarity = Math.max(maxSimilarity, similarity);
}
return maxSimilarity;
};
//////////////////////
//
// Embedding functions
//
//////////////////////
const loadEmbeddingModel = async () => {
// Check if the tokenizer and model are already loaded and stored in the window object
if (!window.tokenizer) {
window.tokenizer = await AutoTokenizer.from_pretrained(EMBEDDING_MODEL);
}
if (!window.model) {
window.model = await AutoModel.from_pretrained(EMBEDDING_MODEL);
}
// Use the tokenizer and model from the window object
tokenizer = window.tokenizer;
model = window.model;
// Pre-compute embeddings for all unique tags
const allTags = new Set(feedbacks.flatMap((feedback) => feedback.data.tags || []));
await getTagEmbeddings(Array.from(allTags));
};
const getEmbeddings = async (text: string) => {
const tokens = await tokenizer(text);
const output = await model(tokens);
// Perform mean pooling on the last hidden states
const embeddings = output.last_hidden_state.mean(1);
return embeddings.ort_tensor.data;
};
const getTagEmbeddings = async (tags: string[]) => {
const embeddings = new Map();
for (const tag of tags) {
if (!tagEmbeddings.has(tag)) {
tagEmbeddings.set(tag, await getEmbeddings(tag));
}
embeddings.set(tag, tagEmbeddings.get(tag));
}
return embeddings;
};
const debouncedQueryHandler = async () => {
loadingLeaderboard = true;
if (query.trim() === '') {
rankHandler();
return;
}
clearTimeout(debounceTimer);
debounceTimer = setTimeout(async () => {
const queryEmbedding = await getEmbeddings(query);
const similarities = new Map<string, number>();
for (const feedback of feedbacks) {
const feedbackTags = feedback.data.tags || [];
const tagEmbeddings = await getTagEmbeddings(feedbackTags);
const maxSimilarity = calculateMaxSimilarity(queryEmbedding, tagEmbeddings);
similarities.set(feedback.id, maxSimilarity);
}
rankHandler(similarities);
}, 1500); // Debounce for 1.5 seconds
};
$: query, debouncedQueryHandler();
onMount(async () => {
rankHandler();
});
</script>
<div class="mt-0.5 mb-2 gap-1 flex flex-col md:flex-row justify-between">
<div class="flex md:self-center text-lg font-medium px-0.5 shrink-0 items-center">
<div class=" gap-1">
{$i18n.t('Leaderboard')}
</div>
<div class="flex self-center w-[1px] h-6 mx-2.5 bg-gray-50 dark:bg-gray-850" />
<span class="text-lg font-medium text-gray-500 dark:text-gray-300 mr-1.5"
>{rankedModels.length}</span
>
</div>
<div class=" flex space-x-2">
<Tooltip content={$i18n.t('Re-rank models by topic similarity')}>
<div class="flex flex-1">
<div class=" self-center ml-1 mr-3">
<MagnifyingGlass className="size-3" />
</div>
<input
class=" w-full text-sm pr-4 py-1 rounded-r-xl outline-none bg-transparent"
bind:value={query}
placeholder={$i18n.t('Search')}
on:focus={() => {
loadEmbeddingModel();
}}
/>
</div>
</Tooltip>
</div>
</div>
<div class="scrollbar-hidden relative whitespace-nowrap overflow-x-auto max-w-full rounded pt-0.5">
{#if loadingLeaderboard}
<div class=" absolute top-0 bottom-0 left-0 right-0 flex">
<div class="m-auto">
<Spinner />
</div>
</div>
{/if}
{#if (rankedModels ?? []).length === 0}
<div class="text-center text-xs text-gray-500 dark:text-gray-400 py-1">
{$i18n.t('No models found')}
</div>
{:else}
<table
class="w-full text-sm text-left text-gray-500 dark:text-gray-400 table-auto max-w-full rounded {loadingLeaderboard
? 'opacity-20'
: ''}"
>
<thead
class="text-xs text-gray-700 uppercase bg-gray-50 dark:bg-gray-850 dark:text-gray-400 -translate-y-0.5"
>
<tr class="">
<th scope="col" class="px-3 py-1.5 cursor-pointer select-none w-3">
{$i18n.t('RK')}
</th>
<th scope="col" class="px-3 py-1.5 cursor-pointer select-none">
{$i18n.t('Model')}
</th>
<th scope="col" class="px-3 py-1.5 text-right cursor-pointer select-none w-fit">
{$i18n.t('Rating')}
</th>
<th scope="col" class="px-3 py-1.5 text-right cursor-pointer select-none w-5">
{$i18n.t('Won')}
</th>
<th scope="col" class="px-3 py-1.5 text-right cursor-pointer select-none w-5">
{$i18n.t('Lost')}
</th>
</tr>
</thead>
<tbody class="">
{#each rankedModels as model, modelIdx (model.id)}
<tr class="bg-white dark:bg-gray-900 dark:border-gray-850 text-xs group">
<td class="px-3 py-1.5 text-left font-medium text-gray-900 dark:text-white w-fit">
<div class=" line-clamp-1">
{model?.rating !== '-' ? modelIdx + 1 : '-'}
</div>
</td>
<td class="px-3 py-1.5 flex flex-col justify-center">
<div class="flex items-center gap-2">
<div class="flex-shrink-0">
<img
src={model?.info?.meta?.profile_image_url ?? '/favicon.png'}
alt={model.name}
class="size-5 rounded-full object-cover shrink-0"
/>
</div>
<div class="font-medium text-gray-800 dark:text-gray-200 pr-4">
{model.name}
</div>
</div>
</td>
<td class="px-3 py-1.5 text-right font-medium text-gray-900 dark:text-white w-max">
{model.rating}
</td>
<td class=" px-3 py-1.5 text-right font-semibold text-green-500">
<div class=" w-10">
{#if model.stats.won === '-'}
-
{:else}
<span class="hidden group-hover:inline"
>{((model.stats.won / model.stats.count) * 100).toFixed(1)}%</span
>
<span class=" group-hover:hidden">{model.stats.won}</span>
{/if}
</div>
</td>
<td class="px-3 py-1.5 text-right font-semibold text-red-500">
<div class=" w-10">
{#if model.stats.lost === '-'}
-
{:else}
<span class="hidden group-hover:inline"
>{((model.stats.lost / model.stats.count) * 100).toFixed(1)}%</span
>
<span class=" group-hover:hidden">{model.stats.lost}</span>
{/if}
</div>
</td>
</tr>
{/each}
</tbody>
</table>
{/if}
</div>
<div class=" text-gray-500 text-xs mt-1.5 w-full flex justify-end">
<div class=" text-right">
<div class="line-clamp-1">
ⓘ {$i18n.t(
'The evaluation leaderboard is based on the Elo rating system and is updated in real-time.'
)}
</div>
{$i18n.t(
'The leaderboard is currently in beta, and we may adjust the rating calculations as we refine the algorithm.'
)}
</div>
</div>