Spaces:
Runtime error
Runtime error
Zeph27
commited on
Commit
β’
e95a3a8
0
Parent(s):
init
Browse files- .gitignore +1 -0
- app.py +78 -0
- requirements.txt +7 -0
- tiktok.py +26 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
venv/
|
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModel, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
from decord import VideoReader, cpu
|
5 |
+
import os
|
6 |
+
import spaces
|
7 |
+
|
8 |
+
# Load the model and tokenizer
|
9 |
+
model_name = "openbmb/MiniCPM-V-2_6-int4"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
11 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, device_map="auto")
|
12 |
+
model.eval()
|
13 |
+
|
14 |
+
MAX_NUM_FRAMES = 64
|
15 |
+
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'}
|
16 |
+
|
17 |
+
def get_file_extension(filename):
|
18 |
+
return os.path.splitext(filename)[1].lower()
|
19 |
+
|
20 |
+
def is_video(filename):
|
21 |
+
return get_file_extension(filename) in VIDEO_EXTENSIONS
|
22 |
+
|
23 |
+
def encode_video(video):
|
24 |
+
def uniform_sample(l, n):
|
25 |
+
gap = len(l) / n
|
26 |
+
idxs = [int(i * gap + gap / 2) for i in range(n)]
|
27 |
+
return [l[i] for i in idxs]
|
28 |
+
|
29 |
+
if hasattr(video, 'path'):
|
30 |
+
video_path = video.path
|
31 |
+
else:
|
32 |
+
video_path = video.file.path
|
33 |
+
|
34 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
35 |
+
total_frames = len(vr)
|
36 |
+
if total_frames <= MAX_NUM_FRAMES:
|
37 |
+
frame_idxs = list(range(total_frames))
|
38 |
+
else:
|
39 |
+
frame_idxs = uniform_sample(range(total_frames), MAX_NUM_FRAMES)
|
40 |
+
|
41 |
+
frames = vr.get_batch(frame_idxs).asnumpy()
|
42 |
+
return frames
|
43 |
+
|
44 |
+
@spaces.GPU
|
45 |
+
def analyze_video(video, prompt):
|
46 |
+
if not is_video(video.name):
|
47 |
+
return "Please upload a valid video file."
|
48 |
+
|
49 |
+
frames = encode_video(video)
|
50 |
+
|
51 |
+
# Prepare the frames for the model
|
52 |
+
inputs = model.vpm(frames)
|
53 |
+
|
54 |
+
# Generate the caption with the user's prompt
|
55 |
+
with torch.no_grad():
|
56 |
+
outputs = model.generate(inputs=inputs, tokenizer=tokenizer, max_new_tokens=50, prompt=prompt)
|
57 |
+
|
58 |
+
# Decode the output
|
59 |
+
caption = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
60 |
+
|
61 |
+
return caption
|
62 |
+
|
63 |
+
# Create the Gradio interface using Blocks
|
64 |
+
with gr.Blocks(title="Video Analyzer using MiniCPM-V-2.6-int4") as iface:
|
65 |
+
gr.Markdown("# Video Analyzer using MiniCPM-V-2.6-int4")
|
66 |
+
gr.Markdown("Upload a video to get an analysis using the MiniCPM-V-2.6-int4 model.")
|
67 |
+
gr.Markdown("This model uses 4-bit quantization for improved efficiency. [Learn more](https://huggingface.co/openbmb/MiniCPM-V-2_6-int4)")
|
68 |
+
|
69 |
+
with gr.Row():
|
70 |
+
video_input = gr.Video()
|
71 |
+
prompt_input = gr.Textbox(label="Prompt (optional)", placeholder="Enter a prompt to guide the analysis...")
|
72 |
+
analysis_output = gr.Textbox(label="Video Analysis")
|
73 |
+
|
74 |
+
analyze_button = gr.Button("Analyze Video")
|
75 |
+
analyze_button.click(fn=analyze_video, inputs=[video_input, prompt_input], outputs=analysis_output)
|
76 |
+
|
77 |
+
# Launch the interface
|
78 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Pillow==10.1.0
|
2 |
+
torch==2.1.2
|
3 |
+
torchvision==0.16.2
|
4 |
+
transformers==4.40.0
|
5 |
+
sentencepiece==0.1.99
|
6 |
+
accelerate==0.30.1
|
7 |
+
bitsandbytes==0.43.1
|
tiktok.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
from douyin_tiktok_scraper.scraper import Scraper
|
3 |
+
import traceback
|
4 |
+
|
5 |
+
api = Scraper()
|
6 |
+
|
7 |
+
async def hybrid_parsing(url: str) -> dict:
|
8 |
+
try:
|
9 |
+
result = await api.hybrid_parsing(url)
|
10 |
+
print(f"The hybrid parsing result:\n {result}")
|
11 |
+
return result
|
12 |
+
except Exception as e:
|
13 |
+
print(f"An error occurred: {str(e)}")
|
14 |
+
print("Traceback:")
|
15 |
+
traceback.print_exc()
|
16 |
+
return None
|
17 |
+
|
18 |
+
async def main():
|
19 |
+
url = input("Paste Douyin/TikTok/Bilibili share URL here: ")
|
20 |
+
result = await hybrid_parsing(url)
|
21 |
+
if result:
|
22 |
+
print("Parsing successful!")
|
23 |
+
else:
|
24 |
+
print("Parsing failed.")
|
25 |
+
|
26 |
+
asyncio.run(main())
|