dvilasuero's picture
dvilasuero HF staff
Update src/distilabel_dataset_generator/apps/sft.py
69a533b verified
raw
history blame
11.5 kB
import multiprocessing
import time
import gradio as gr
import pandas as pd
from distilabel.distiset import Distiset
from src.distilabel_dataset_generator.pipelines.sft import (
DEFAULT_DATASET,
DEFAULT_DATASET_DESCRIPTIONS,
DEFAULT_SYSTEM_PROMPT,
PROMPT_CREATION_PROMPT,
generate_pipeline_code,
get_pipeline,
get_prompt_generation_step,
)
from src.distilabel_dataset_generator.utils import (
get_login_button,
get_org_dropdown,
get_token,
swap_visibilty,
)
def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, is_sample):
pipeline = get_pipeline(
num_turns,
num_rows,
system_prompt,
is_sample
)
distiset: Distiset = pipeline.run(use_cache=False)
result_queue.put(distiset)
def generate_system_prompt(dataset_description, progress=gr.Progress()):
progress(0.1, desc="Initializing text generation")
generate_description = get_prompt_generation_step()
progress(0.4, desc="Loading model")
generate_description.load()
progress(0.7, desc="Generating system prompt")
result = next(
generate_description.process(
[
{
"system_prompt": PROMPT_CREATION_PROMPT,
"instruction": dataset_description,
}
]
)
)[0]["generation"]
progress(1.0, desc="System prompt generated")
return result
def generate_sample_dataset(system_prompt, progress=gr.Progress()):
progress(0.1, desc="Initializing sample dataset generation")
result = generate_dataset(system_prompt, num_turns=1, num_rows=1, progress=progress, is_sample=True)
progress(1.0, desc="Sample dataset generated")
return result
def generate_dataset(
system_prompt: str,
num_turns: int = 1,
num_rows: int = 5,
private: bool = True,
org_name: str = None,
repo_name: str = None,
oauth_token: str = None,
progress=gr.Progress(),
is_sample: bool = False,
):
repo_id = (
f"{org_name}/{repo_name}"
if repo_name is not None and org_name is not None
else None
)
if repo_id is not None:
if not all([repo_id, org_name, repo_name]):
raise gr.Error(
"Please provide a repo_name and org_name to push the dataset to."
)
if num_turns > 4:
num_turns = 4
gr.Info("You can only generate a dataset with 4 or fewer turns. Setting to 4.")
if num_rows > 5000:
num_rows = 1000
gr.Info(
"You can only generate a dataset with 1000 or fewer rows. Setting to 1000."
)
if num_rows < 5:
duration = 25
elif num_rows < 10:
duration = 60
elif num_rows < 30:
duration = 120
elif num_rows < 100:
duration = 240
elif num_rows < 300:
duration = 600
elif num_rows < 1000:
duration = 1200
else:
duration = 2400
result_queue = multiprocessing.Queue()
p = multiprocessing.Process(
target=_run_pipeline,
args=(result_queue, num_turns, num_rows, system_prompt, is_sample),
)
try:
p.start()
total_steps = 100
for step in range(total_steps):
if not p.is_alive() or p._popen.poll() is not None:
break
progress(
(step + 1) / total_steps,
desc=f"Generating dataset with {num_rows} rows. Don't close this window.",
)
time.sleep(duration / total_steps) # Adjust this value based on your needs
p.join()
except Exception as e:
raise gr.Error(f"An error occurred during dataset generation: {str(e)}")
distiset = result_queue.get()
if repo_id is not None:
progress(0.95, desc="Pushing dataset to Hugging Face Hub.")
distiset.push_to_hub(
repo_id=repo_id,
private=private,
include_script=False,
token=oauth_token,
)
# If not pushing to hub generate the dataset directly
distiset = distiset["default"]["train"]
if num_turns == 1:
outputs = distiset.to_pandas()[["prompt", "completion"]]
else:
outputs = distiset.to_pandas()[["messages"]]
progress(1.0, desc="Dataset generation completed")
return pd.DataFrame(outputs)
css = """
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
"""
with gr.Blocks(
title="⚗️ Distilabel Dataset Generator",
head="⚗️ Distilabel Dataset Generator",
css=css,
) as app:
with gr.Row():
with gr.Column(scale=1):
get_login_button()
with gr.Column(scale=2):
gr.Markdown(
"This token will only be used to push the dataset to the Hugging Face Hub. There are no generation costs because we are using Free Serverless Inference Endpoints."
)
gr.Markdown("## Iterate on a sample dataset")
with gr.Column() as main_ui:
dataset_description = gr.TextArea(
label="Give a precise description of the assistant or tool. Don't describe the dataset",
value=DEFAULT_DATASET_DESCRIPTIONS[0],
)
examples = gr.Examples(
elem_id="system_prompt_examples",
examples=[[example] for example in DEFAULT_DATASET_DESCRIPTIONS[1:]],
inputs=[dataset_description],
)
with gr.Row():
gr.Column(scale=1)
btn_generate_system_prompt = gr.Button(value="Generate sample")
gr.Column(scale=1)
system_prompt = gr.TextArea(
label="System prompt for dataset generation. You can tune it and regenerate the sample",
value=DEFAULT_SYSTEM_PROMPT,
)
with gr.Row():
table = gr.DataFrame(
value=DEFAULT_DATASET,
label="Sample dataset. Prompts and completions truncated to 256 tokens.",
interactive=False,
wrap=True,
)
with gr.Row():
gr.Column(scale=1)
btn_generate_sample_dataset = gr.Button(
value="Regenerate sample",
)
gr.Column(scale=1)
result = btn_generate_system_prompt.click(
fn=generate_system_prompt,
inputs=[dataset_description],
outputs=[system_prompt],
show_progress=True,
).then(
fn=generate_sample_dataset,
inputs=[system_prompt],
outputs=[table],
show_progress=True,
)
btn_generate_sample_dataset.click(
fn=generate_sample_dataset,
inputs=[system_prompt],
outputs=[table],
show_progress=True,
)
# Add a header for the full dataset generation section
gr.Markdown("## Generate full dataset")
gr.Markdown(
"Once you're satisfied with the sample, generate a larger dataset and push it to the Hub."
)
with gr.Column() as push_to_hub_ui:
with gr.Row(variant="panel"):
num_turns = gr.Number(
value=1,
label="Number of turns in the conversation",
minimum=1,
maximum=4,
step=1,
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
)
num_rows = gr.Number(
value=10,
label="Number of rows in the dataset",
minimum=1,
maximum=500,
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
)
with gr.Row(variant="panel"):
oauth_token = gr.Textbox(
value=get_token(),
label="Hugging Face Token",
placeholder="hf_...",
type="password",
visible=False,
)
org_name = get_org_dropdown()
repo_name = gr.Textbox(label="Repo name", placeholder="dataset_name", value="my-distiset")
private = gr.Checkbox(
label="Private dataset", value=True, interactive=True, scale=0.5
)
with gr.Row() as regenerate_row:
gr.Column(scale=1)
btn_generate_full_dataset = gr.Button(
value="Generate Full Dataset", variant="primary"
)
gr.Column(scale=1)
success_message = gr.Markdown(visible=False)
with gr.Row():
final_dataset = gr.DataFrame(
value=DEFAULT_DATASET,
label="Generated dataset",
interactive=False,
wrap=True,
)
def show_success_message(org_name, repo_name):
return gr.Markdown(
value=f"""
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
<p style="margin-top: 0.5em;">
The generated dataset is in the right format for Fine-tuning with TRL, AutoTrain or other frameworks.
Your dataset is now available at:
<a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;">
https://huggingface.co/datasets/{org_name}/{repo_name}
</a>
</p>
</div>
""",
visible=True,
)
def hide_success_message():
return gr.Markdown(visible=False)
btn_generate_full_dataset.click(
fn=hide_success_message,
outputs=[success_message],
).then(
fn=generate_dataset,
inputs=[
system_prompt,
num_turns,
num_rows,
private,
org_name,
repo_name,
oauth_token,
],
outputs=[final_dataset],
show_progress=True,
).success(
fn=show_success_message,
inputs=[org_name, repo_name],
outputs=[success_message],
)
gr.Markdown("## Or run this pipeline locally with distilabel")
with gr.Accordion("Run this pipeline on Distilabel", open=False):
pipeline_code = gr.Code(
value=generate_pipeline_code(
system_prompt.value, num_turns.value, num_rows.value
),
language="python",
label="Distilabel Pipeline Code",
)
system_prompt.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
num_turns.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
num_rows.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
app.load(get_token, outputs=[oauth_token])
app.load(get_org_dropdown, outputs=[org_name])
app.load(fn=swap_visibilty, outputs=main_ui)