davidberenstein1957 HF staff commited on
Commit
f7b33f1
·
1 Parent(s): 75f9ac3

feat: map to trl/autotrain compatible columns

Browse files
src/distilabel_dataset_generator/sft.py CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
5
  from distilabel.distiset import Distiset
6
  from distilabel.llms import InferenceEndpointsLLM
7
  from distilabel.pipeline import Pipeline
 
8
  from distilabel.steps.tasks import MagpieGenerator, TextGeneration
9
 
10
  from src.distilabel_dataset_generator.utils import (
@@ -141,8 +142,18 @@ DEFAULT_DATASET = pd.DataFrame(
141
 
142
 
143
  def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str = None):
 
 
 
 
 
 
 
 
 
 
144
  with Pipeline(name="sft") as pipeline:
145
- magpie_step = MagpieGenerator(
146
  llm=InferenceEndpointsLLM(
147
  model_id=MODEL,
148
  tokenizer_id=MODEL,
@@ -150,6 +161,7 @@ def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str =
150
  generation_kwargs={
151
  "temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
152
  "do_sample": True,
 
153
  "stop_sequences": [
154
  "<|eot_id|>",
155
  "<|end_of_text|>",
@@ -163,7 +175,12 @@ def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str =
163
  n_turns=num_turns,
164
  num_rows=num_rows,
165
  system_prompt=system_prompt,
 
 
 
 
166
  )
 
167
  distiset: Distiset = pipeline.run()
168
  result_queue.put(distiset)
169
 
@@ -212,7 +229,9 @@ def generate_dataset(
212
  "Please sign in with Hugging Face to be able to push the dataset to the Hub."
213
  )
214
 
215
- gr.Info("Started pipeline execution.")
 
 
216
  result_queue = multiprocessing.Queue()
217
  p = multiprocessing.Process(
218
  target=_run_pipeline,
@@ -223,7 +242,7 @@ def generate_dataset(
223
  distiset = result_queue.get()
224
 
225
  if dataset_name is not None:
226
- gr.Info("Pushing dataset to Hugging Face Hub...")
227
  repo_id = f"{orgs_selector}/{dataset_name}"
228
  distiset.push_to_hub(
229
  repo_id=repo_id,
@@ -231,17 +250,19 @@ def generate_dataset(
231
  include_script=False,
232
  token=token.token,
233
  )
234
- gr.Info(f"Dataset pushed to Hugging Face Hub: https://huggingface.co/{repo_id}")
 
 
235
  else:
236
  # If not pushing to hub generate the dataset directly
237
  distiset = distiset["default"]["train"]
238
  if num_turns == 1:
239
- outputs = distiset.to_pandas()[["instruction", "response"]]
240
  else:
241
  outputs = {"conversation_id": [], "role": [], "content": []}
242
- conversations = distiset["conversation"]
243
  for idx, entry in enumerate(conversations):
244
- for message in entry["conversation"]:
245
  outputs["conversation_id"].append(idx + 1)
246
  outputs["role"].append(message["role"])
247
  outputs["content"].append(message["content"])
 
5
  from distilabel.distiset import Distiset
6
  from distilabel.llms import InferenceEndpointsLLM
7
  from distilabel.pipeline import Pipeline
8
+ from distilabel.steps import KeepColumns
9
  from distilabel.steps.tasks import MagpieGenerator, TextGeneration
10
 
11
  from src.distilabel_dataset_generator.utils import (
 
142
 
143
 
144
  def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str = None):
145
+ output_mappings = (
146
+ {
147
+ "instruction": "prompt",
148
+ "response": "completion",
149
+ }
150
+ if num_turns == 1
151
+ else {
152
+ "conversation": "messages",
153
+ }
154
+ )
155
  with Pipeline(name="sft") as pipeline:
156
+ magpie = MagpieGenerator(
157
  llm=InferenceEndpointsLLM(
158
  model_id=MODEL,
159
  tokenizer_id=MODEL,
 
161
  generation_kwargs={
162
  "temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
163
  "do_sample": True,
164
+ "max_new_tokens": 2048,
165
  "stop_sequences": [
166
  "<|eot_id|>",
167
  "<|end_of_text|>",
 
175
  n_turns=num_turns,
176
  num_rows=num_rows,
177
  system_prompt=system_prompt,
178
+ output_mappings=output_mappings,
179
+ )
180
+ keep_columns = KeepColumns(
181
+ columns=list(output_mappings.values()) + ["model_name"],
182
  )
183
+ magpie.connect(keep_columns)
184
  distiset: Distiset = pipeline.run()
185
  result_queue.put(distiset)
186
 
 
229
  "Please sign in with Hugging Face to be able to push the dataset to the Hub."
230
  )
231
 
232
+ gr.Info(
233
+ "Started pipeline execution. This might take a while, depending on the number of rows and turns you have selected. Don't close this page."
234
+ )
235
  result_queue = multiprocessing.Queue()
236
  p = multiprocessing.Process(
237
  target=_run_pipeline,
 
242
  distiset = result_queue.get()
243
 
244
  if dataset_name is not None:
245
+ gr.Info("Pushing dataset to Hugging Face Hub.")
246
  repo_id = f"{orgs_selector}/{dataset_name}"
247
  distiset.push_to_hub(
248
  repo_id=repo_id,
 
250
  include_script=False,
251
  token=token.token,
252
  )
253
+ gr.Info(
254
+ f'Dataset pushed to Hugging Face Hub: <a href="https://huggingface.co/datasets/{repo_id}">https://huggingface.co/datasets/{repo_id}</a>'
255
+ )
256
  else:
257
  # If not pushing to hub generate the dataset directly
258
  distiset = distiset["default"]["train"]
259
  if num_turns == 1:
260
+ outputs = distiset.to_pandas()[["prompt", "completion"]]
261
  else:
262
  outputs = {"conversation_id": [], "role": [], "content": []}
263
+ conversations = distiset["messages"]
264
  for idx, entry in enumerate(conversations):
265
+ for message in entry["messages"]:
266
  outputs["conversation_id"].append(idx + 1)
267
  outputs["role"].append(message["role"])
268
  outputs["content"].append(message["content"])