import torch from transformers import AutoTokenizer, VisionEncoderDecoderModel class Inference: def __init__(self, decoder_model_name, max_length=32): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.tokenizer = AutoTokenizer.from_pretrained(decoder_model_name) self.encoder_decoder_model = VisionEncoderDecoderModel.from_pretrained('armgabrielyan/video-summarization') self.encoder_decoder_model.to(self.device) self.max_length = max_length def generate_texts(self, pixel_values): if not self.tokenizer.pad_token: self.tokenizer.add_special_tokens({'pad_token': '[PAD]'}) self.encoder_decoder_model.decoder.resize_token_embeddings(len(self.tokenizer)) generated_ids = self.encoder_decoder_model.generate( pixel_values.to(self.device), max_length=self.max_length, num_beams=4, no_repeat_ngram_size=2, ) generated_texts = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_texts