Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
-
from tensorflow.keras.preprocessing import image
|
4 |
import numpy as np
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
-
import os
|
7 |
|
|
|
8 |
def load_model_from_hub(repo_id, filename):
|
9 |
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
10 |
return tf.keras.models.load_model(model_path)
|
11 |
|
12 |
-
# Load
|
13 |
-
model1 = load_model_from_hub("arsath-sm/face_classification_model1", "
|
14 |
-
model2 = load_model_from_hub("arsath-sm/face_classification_model2", "
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
img =
|
19 |
-
img = image.img_to_array(img)
|
20 |
-
img = np.expand_dims(img, axis=0)
|
21 |
img = img / 255.0
|
22 |
-
return img
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
preprocessed_img = preprocess_image(img)
|
27 |
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
confidence2 =
|
36 |
|
37 |
return {
|
38 |
"Model 1 Prediction": f"{result1} (Confidence: {confidence1:.2f})",
|
@@ -41,8 +38,8 @@ def predict(img):
|
|
41 |
|
42 |
# Create the Gradio interface
|
43 |
iface = gr.Interface(
|
44 |
-
fn=
|
45 |
-
inputs=gr.Image(
|
46 |
outputs={
|
47 |
"Model 1 Prediction": gr.Textbox(),
|
48 |
"Model 2 Prediction": gr.Textbox()
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
|
|
3 |
import numpy as np
|
4 |
from huggingface_hub import hf_hub_download
|
|
|
5 |
|
6 |
+
# Function to load model from H5 file
|
7 |
def load_model_from_hub(repo_id, filename):
|
8 |
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
9 |
return tf.keras.models.load_model(model_path)
|
10 |
|
11 |
+
# Load models from Hugging Face Hub
|
12 |
+
model1 = load_model_from_hub("arsath-sm/face_classification_model1", "model.h5")
|
13 |
+
model2 = load_model_from_hub("arsath-sm/face_classification_model2", "model.h5")
|
14 |
|
15 |
+
def preprocess_image(image):
|
16 |
+
img = tf.convert_to_tensor(image)
|
17 |
+
img = tf.image.resize(img, (150, 150))
|
|
|
|
|
18 |
img = img / 255.0
|
19 |
+
return tf.expand_dims(img, 0)
|
20 |
|
21 |
+
def predict_image(image):
|
22 |
+
preprocessed_image = preprocess_image(image)
|
|
|
23 |
|
24 |
+
# Make predictions using both models
|
25 |
+
pred1 = model1.predict(preprocessed_image)[0][0]
|
26 |
+
pred2 = model2.predict(preprocessed_image)[0][0]
|
27 |
|
28 |
+
# Prepare results for each model
|
29 |
+
result1 = "Real" if pred1 > 0.5 else "Fake"
|
30 |
+
confidence1 = pred1 if pred1 > 0.5 else 1 - pred1
|
31 |
+
result2 = "Real" if pred2 > 0.5 else "Fake"
|
32 |
+
confidence2 = pred2 if pred2 > 0.5 else 1 - pred2
|
33 |
|
34 |
return {
|
35 |
"Model 1 Prediction": f"{result1} (Confidence: {confidence1:.2f})",
|
|
|
38 |
|
39 |
# Create the Gradio interface
|
40 |
iface = gr.Interface(
|
41 |
+
fn=predict_image,
|
42 |
+
inputs=gr.Image(),
|
43 |
outputs={
|
44 |
"Model 1 Prediction": gr.Textbox(),
|
45 |
"Model 2 Prediction": gr.Textbox()
|