arssite's picture
Update app.py
68e4877 verified
import torch
import gradio as gr
from PIL import Image
import scipy.io.wavfile as wavfile
# Use a pipeline as a high-level helper
from transformers import pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
caption_image = pipeline("image-to-text",
model="Salesforce/blip-image-captioning-large", device=device)
def caption_my_image(pil_image):
semantics = caption_image(images=pil_image)[0]['generated_text']
return semantics
demo = gr.Interface(fn=caption_my_image,
inputs=[gr.Image(label="Select Image",type="pil")],
outputs=[gr.Textbox(label="Image Caption")],
title="Image Captioning",
description="THIS APPLICATION WILL BE USED TO CAPTION THE IMAGE.")
demo.launch()