import torch import gradio as gr from PIL import Image import scipy.io.wavfile as wavfile # Use a pipeline as a high-level helper from transformers import pipeline device = "cuda" if torch.cuda.is_available() else "cpu" caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device) def caption_my_image(pil_image): semantics = caption_image(images=pil_image)[0]['generated_text'] return semantics demo = gr.Interface(fn=caption_my_image, inputs=[gr.Image(label="Select Image",type="pil")], outputs=[gr.Textbox(label="Image Caption")], title="Image Captioning", description="THIS APPLICATION WILL BE USED TO CAPTION THE IMAGE.") demo.launch()