artificialguybr commited on
Commit
ab14713
1 Parent(s): f180d69

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -20
app.py CHANGED
@@ -15,8 +15,24 @@ def query(payload, api_url, token):
15
  response = requests.post(api_url, headers=headers, json=payload)
16
  return io.BytesIO(response.content)
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  # Gradio UI
19
- with gr.Blocks(css="custom.css") as demo: # Added the css argument with "custom.css"
 
 
20
  title = gr.HTML(
21
  """<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
22
  elem_id="title",
@@ -34,22 +50,10 @@ with gr.Blocks(css="custom.css") as demo: # Added the css argument with "custom
34
  weight = gr.Slider(0, 10, value=1, step=0.1, label="LoRA weight")
35
  result = gr.Image(interactive=False, label="Generated Image", elem_id="result-image")
36
 
37
- # Define the function to run when the button is clicked
38
- def run_lora(prompt, weight):
39
- selected_lora = loras[0] # You may need to adjust this index if you have multiple models
40
- api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
41
- trigger_word = selected_lora["trigger_word"]
42
- token = os.getenv("API_TOKEN") # This will read the API token set in your managed environment
43
- payload = {"inputs": f"{prompt} {trigger_word}"}
44
-
45
- print("Calling query function...")
46
- image_bytes = query(payload, api_url, token)
47
- print("Query function executed successfully.")
48
- return Image.open(image_bytes)
49
-
50
- print("Starting Gradio UI...")
51
- gr.Interface(
52
- fn=run_lora,
53
- inputs=[prompt, weight],
54
- outputs=[result],
55
- ).launch()
 
15
  response = requests.post(api_url, headers=headers, json=payload)
16
  return io.BytesIO(response.content)
17
 
18
+ # Define the function to run when the button is clicked
19
+ def run_lora(prompt, weight):
20
+ print("Inside run_lora")
21
+ selected_lora = loras[0] # You may need to adjust this index if you have multiple models
22
+ api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
23
+ trigger_word = selected_lora["trigger_word"]
24
+ token = os.getenv("API_TOKEN") # This will read the API token set in your managed environment
25
+ payload = {"inputs": f"{prompt} {trigger_word}"}
26
+
27
+ print("Calling query function...")
28
+ image_bytes = query(payload, api_url, token)
29
+ print("Query function executed successfully.")
30
+ return Image.open(image_bytes)
31
+
32
  # Gradio UI
33
+ print("Before Gradio Blocks")
34
+ with gr.Blocks(css="custom.css") as demo:
35
+ print("Inside Gradio Blocks")
36
  title = gr.HTML(
37
  """<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
38
  elem_id="title",
 
50
  weight = gr.Slider(0, 10, value=1, step=0.1, label="LoRA weight")
51
  result = gr.Image(interactive=False, label="Generated Image", elem_id="result-image")
52
 
53
+ print("Before Gradio Interface")
54
+ gr.Interface(
55
+ fn=run_lora,
56
+ inputs=[prompt, weight],
57
+ outputs=[result],
58
+ ).launch()
59
+ print("After Gradio Interface")