File size: 7,232 Bytes
07b8c5e
 
 
 
 
d4f55c7
53c8204
07b8c5e
 
 
 
 
 
 
 
9c246bf
 
 
 
 
 
 
 
 
af35943
9c246bf
 
d226d4e
d4f55c7
90cb8f1
 
 
 
 
 
07b8c5e
 
90cb8f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07b8c5e
d4f55c7
404edfc
d4f55c7
 
 
404edfc
d4f55c7
404edfc
d4f55c7
404edfc
 
 
07b8c5e
 
 
 
ddf5341
07b8c5e
7240ddc
ddf5341
07b8c5e
 
 
ddf5341
07b8c5e
 
 
ddf5341
07b8c5e
404edfc
8b235cc
5f9b2c5
86f908d
f39f62b
86f908d
f39f62b
 
 
 
 
 
5ccfd0c
 
f39f62b
 
 
 
 
5ccfd0c
 
f39f62b
 
 
 
 
 
ddf5341
f39f62b
 
 
 
5ccfd0c
f39f62b
 
0ff8cd7
6589d49
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gradio as gr
import requests
import io
from PIL import Image
import json
from image_processing import downscale_image, limit_colors, convert_to_grayscale, convert_to_black_and_white
import logging

class SomeClass:
    def __init__(self):
        self.images = []

with open('loras.json', 'r') as f:
    loras = json.load(f)

def update_selection(selected_state: gr.SelectData):
    logging.debug(f"Inside update_selection, selected_state: {selected_state}")
    selected_lora_index = selected_state.index
    selected_lora = loras[selected_lora_index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        selected_state
    )

def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)):
    logging.debug(f"Inside run_lora, selected_state: {selected_state}")
    if not selected_state:
        logging.error("selected_state is None or empty.")
        raise gr.Error("You must select a LoRA before proceeding.")  # Popup error when no LoRA is selected

    selected_lora_index = selected_state.index  # Changed this line
    selected_lora = loras[selected_lora_index]
    api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
    trigger_word = selected_lora["trigger_word"]
    #token = os.getenv("API_TOKEN")
    payload = {
        "inputs": f"{prompt} {trigger_word}",
        "parameters":{"negative_prompt": "bad art, ugly, watermark, deformed"},
    }
    #headers = {"Authorization": f"Bearer {token}"}
    
    # Add a print statement to display the API request
    print(f"API Request: {api_url}")
    #print(f"API Headers: {headers}")
    print(f"API Payload: {payload}")

    error_count = 0
    pbar = tqdm(total=None, desc="Loading model")
    while(True):
        response = requests.post(api_url, json=payload)
        if response.status_code == 200:
            return Image.open(io.BytesIO(response.content))
        elif response.status_code == 503:
            #503 is triggered when the model is doing cold boot. It also gives you a time estimate from when the model is loaded but it is not super precise
            time.sleep(1)
            pbar.update(1)
        elif response.status_code == 500 and error_count < 5:
            print(response.content)
            time.sleep(1)
            error_count += 1
            continue
        else:
            logging.error(f"API Error: {response.status_code}")
            raise gr.Error("API Error: Unable to fetch the image.")  # Raise a Gradio error here

def apply_post_processing(image, downscale, limit_colors, grayscale, black_and_white):
    processed_image = image.copy()
    if downscale > 1:
        processed_image = downscale_image(processed_image, downscale)
    if limit_colors:
        processed_image = limit_colors(processed_image)
    if grayscale:
        processed_image = convert_to_grayscale(processed_image)
    if black_and_white:
        processed_image = convert_to_black_and_white(processed_image)
    return processed_image

with gr.Blocks() as app:
    title = gr.Markdown("# artificialguybr LoRA portfolio")
    description = gr.Markdown("### This is a Pixel Art Generator using SD Loras.")
    selected_state = gr.State()
    
    with gr.Row():
        gallery = gr.Gallery([(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=1)
        
        with gr.Column():
            prompt_title = gr.Markdown("### Click on a LoRA in the gallery to create with it")
            selected_info = gr.Markdown("")
            
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA")
                button = gr.Button("Run")
            
            result = gr.Image(interactive=False, label="Generated Image")
            post_processed_result = gr.Image(interactive=False, label="Post-Processed Image")

    # Accordion moved here, inside the same gr.Blocks context
    with gr.Accordion(label="Pixel art", open=True):
        with gr.Row():
            enabled = gr.Checkbox(label="Enable", value=False)
            downscale = gr.Slider(label="Downscale", minimum=1, maximum=32, step=2, value=8)
            need_rescale = gr.Checkbox(label="Rescale to original size", value=True)
        with gr.Tabs():
            with gr.TabItem("Color"):
                enable_color_limit = gr.Checkbox(label="Enable", value=False)
                palette_size_color = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
                quantization_methods_color = gr.Radio(choices=["Median Cut", "Maximum Coverage", "Fast Octree"], label="Colors Quantization Method", value="Median Cut")
                dither_methods_color = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None")
                k_means_color = gr.Checkbox(label="Enable k-means for color quantization", value=True)
            
            with gr.TabItem("Grayscale"):
                enable_grayscale = gr.Checkbox(label="Enable", value=False)
                palette_size_gray = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
                quantization_methods_gray = gr.Radio(choices=["Median Cut", "Maximum Coverage", "Fast Octree"], label="Colors Quantization Method", value="Median Cut")
                dither_methods_gray = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None")
                k_means_gray = gr.Checkbox(label="Enable k-means for color quantization", value=True)
            
            with gr.TabItem("Black and white"):
                enable_black_and_white = gr.Checkbox(label="Enable", value=False)
                inverse_black_and_white = gr.Checkbox(label="Inverse", value=False)
                threshold_black_and_white = gr.Slider(label="Threshold", minimum=1, maximum=256, step=1, value=128)
            
            with gr.TabItem("Custom color palette"):
                enable_custom_palette = gr.Checkbox(label="Enable", value=False)
                palette_image = gr.Image(label="Color palette image", type="pil")
                palette_size_custom = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
                dither_methods_custom = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None")
                
                post_process_button = gr.Button("Apply Post-Processing")

    # The rest of your code for setting up the app
    gallery.select(update_selection, outputs=[prompt, selected_info, selected_state])
    prompt.submit(fn=run_lora, inputs=[prompt, selected_state], outputs=[result, post_processed_result])
    post_process_button.click(fn=apply_post_processing, inputs=[post_processed_result, downscale, enable_color_limit, enable_grayscale, enable_black_and_white], outputs=[post_processed_result])
    
    app.queue(max_size=20, concurrency_count=5)
    app.launch()