File size: 10,890 Bytes
07b8c5e
 
 
cb4574c
 
07b8c5e
fee6732
639b7e1
8e85047
cb4574c
 
 
07b8c5e
 
 
 
 
 
 
 
9c246bf
 
0904b62
9c246bf
 
 
 
 
 
 
af35943
9c246bf
 
d226d4e
d4f55c7
90cb8f1
505b2aa
cb4574c
90cb8f1
cb4574c
 
 
 
 
 
 
 
 
07b8c5e
 
90cb8f1
 
 
cb4574c
90cb8f1
1b8146c
90cb8f1
cb4574c
 
90cb8f1
 
cb4574c
 
90cb8f1
 
 
 
 
cb4574c
90cb8f1
 
 
cb4574c
 
 
07b8c5e
bd32e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa7ff49
 
bd32e71
 
 
404edfc
bd32e71
d4f55c7
 
bd32e71
 
 
 
 
ffc1008
bd32e71
 
 
 
 
404edfc
bd32e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404edfc
 
08e5b6d
54b2d3b
 
08e5b6d
 
 
54b2d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08e5b6d
54b2d3b
08e5b6d
54b2d3b
 
 
08e5b6d
07b8c5e
 
 
 
ddf5341
07b8c5e
7240ddc
ddf5341
07b8c5e
 
 
ddf5341
07b8c5e
 
 
ddf5341
07b8c5e
5f9b2c5
86f908d
f39f62b
86f908d
f39f62b
 
 
 
 
 
5ccfd0c
 
f39f62b
 
 
 
 
5ccfd0c
 
f39f62b
 
 
 
 
 
ddf5341
f39f62b
 
 
 
5ccfd0c
0ff8cd7
6589d49
 
33e2812
71f794e
 
fe5728b
71f794e
 
fe5728b
 
 
 
71f794e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5728b
2a72c8b
fe5728b
6589d49
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import gradio as gr
import requests
import io
import os
import logging
from PIL import Image
from image_processing import downscale_image, limit_colors, convert_to_grayscale, convert_to_black_and_white, resize_image, DITHER_METHODS, QUANTIZATION_METHODS
import json 
import time 

# Configuração de log
logging.basicConfig(level=logging.DEBUG)

class SomeClass:
    def __init__(self):
        self.images = []

with open('loras.json', 'r') as f:
    loras = json.load(f)

def update_selection(selected_state: gr.SelectData):
    logging.debug(f"Inside update_selection, selected_state: {selected_state}")
    logging.debug(f"Content of selected_state: {vars(selected_state)}")  # Log the content
    selected_lora_index = selected_state.index
    selected_lora = loras[selected_lora_index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        selected_state
    )

def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)):
    logging.debug(f"Inside run_lora, selected_state: {selected_state}")
    logging.debug(f"Content of selected_state in run_lora: {vars(selected_state)}")
    
    if not selected_state:
        logging.error("selected_state is None or empty. Make sure a LoRA is selected.")
        raise gr.Error("You must select a LoRA before proceeding.")
    
    token = os.getenv("API_TOKEN")
    if not token:
        logging.error("API_TOKEN is not set.")
        raise gr.Error("API_TOKEN is not set.")
    
    selected_lora_index = selected_state.index
    selected_lora = loras[selected_lora_index]
    api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
    trigger_word = selected_lora["trigger_word"]
    payload = {
        "inputs": f"{prompt} {trigger_word}",
        "parameters": {"negative_prompt": "bad art, ugly, watermark, deformed"},
    }
    headers = {"Authorization": f"Bearer {token}"}
    
    logging.debug(f"API Request: {api_url}")
    logging.debug(f"API Payload: {payload}")

    error_count = 0
    while True:
        response = requests.post(api_url, json=payload, headers=headers)
        if response.status_code == 200:
            return Image.open(io.BytesIO(response.content))
        elif response.status_code == 503:
            time.sleep(1)
        elif response.status_code == 500 and error_count < 5:
            logging.error(response.content)
            time.sleep(1)
            error_count += 1
        else:
            logging.error(f"Unexpected API Error: {response.status_code}")
            raise gr.Error(f"Unexpected API Error: {response.status_code}")


def postprocess(
    image, 
    enabled,
    downscale,
    need_rescale,
    enable_color_limit,
    number_of_colors,
    quantization_method,
    dither_method,
    use_k_means,
    is_grayscale,
    number_of_shades,
    quantization_method_grayscale,
    dither_method_grayscale,
    use_k_means_grayscale,
    is_black_and_white,
    is_inversed_black_and_white,
    black_and_white_threshold,
    use_color_palette,
    palette_image,
    palette_colors,
    dither_method_palette
):
    logging.debug(f"Available keys in QUANTIZATION_METHODS: {QUANTIZATION_METHODS.keys()}")
    logging.debug(f"Selected quantization_method: {quantization_method}")
    if not enabled:
        return image

    processed_image = image.copy()

    if downscale > 1:
        processed_image = downscale_image(processed_image, downscale)

    if enable_color_limit:
        processed_image = limit_colors(
            image=processed_image,
            limit=number_of_colors,
            quantize=QUANTIZATION_METHODS[quantization_method.capitalize()],
            dither=DITHER_METHODS[dither_method],
            use_k_means=use_k_means
        )

    if is_grayscale:
        processed_image = convert_to_grayscale(processed_image)
        processed_image = limit_colors(
            image=processed_image,
            limit=number_of_shades,
            quantize=QUANTIZATION_METHODS[quantization_method_grayscale],
            dither=DITHER_METHODS[dither_method_grayscale],
            use_k_means=use_k_means_grayscale
        )

    if is_black_and_white:
        processed_image = convert_to_black_and_white(processed_image, black_and_white_threshold, is_inversed_black_and_white)

    if use_color_palette:
        processed_image = limit_colors(
            image=processed_image,
            palette=palette_image,
            palette_colors=palette_colors,
            dither=DITHER_METHODS[dither_method_palette]
        )

    if need_rescale:
        processed_image = resize_image(processed_image, image.size)

    return processed_image

def run_and_postprocess(prompt, selected_state, enabled, downscale, need_rescale, enable_color_limit, palette_size_color, quantization_methods_color, dither_methods_color, k_means_color, enable_grayscale, palette_size_gray, quantization_methods_gray, dither_methods_gray, k_means_gray, enable_black_and_white, inverse_black_and_white, threshold_black_and_white, enable_custom_palette, palette_image, palette_size_custom, dither_methods_custom):
    # Debug: Starting the function
    logging.debug("Starting run_and_postprocess function.")
    # Run the original image generation
    original_image = run_lora(prompt, selected_state)
    
    # Debug: Confirming that the original image was generated
    logging.debug("Original image generated.")
    
    # Post-process the image based on user input
    processed_image = postprocess(
        original_image, 
        enabled, 
        downscale, 
        need_rescale, 
        enable_color_limit, 
        palette_size_color, 
        quantization_methods_color, 
        dither_methods_color, 
        k_means_color, 
        enable_grayscale, 
        palette_size_gray, 
        quantization_methods_gray, 
        dither_methods_gray, 
        k_means_gray, 
        enable_black_and_white, 
        inverse_black_and_white, 
        threshold_black_and_white, 
        enable_custom_palette, 
        palette_image, 
        palette_size_custom, 
        dither_methods_custom
    )
    
    # Debug: Confirming that post-processing was applied
    if enabled:
        logging.debug("Post-processing applied.")
    else:
        logging.debug("Post-processing not applied.")
    
    return processed_image if enabled else original_image
        
with gr.Blocks() as app:
    title = gr.Markdown("# artificialguybr LoRA portfolio")
    description = gr.Markdown("### This is a Pixel Art Generator using SD Loras.")
    selected_state = gr.State()
    
    with gr.Row():
        gallery = gr.Gallery([(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=1)
        
        with gr.Column():
            prompt_title = gr.Markdown("### Click on a LoRA in the gallery to create with it")
            selected_info = gr.Markdown("")
            
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA")
                button = gr.Button("Run")
            
            result = gr.Image(interactive=False, label="Generated Image")
    # Accordion moved here, inside the same gr.Blocks context
    with gr.Accordion(label="Pixel art", open=True):
        with gr.Row():
            enabled = gr.Checkbox(label="Enable", value=False)
            downscale = gr.Slider(label="Downscale", minimum=1, maximum=32, step=2, value=8)
            need_rescale = gr.Checkbox(label="Rescale to original size", value=True)
        with gr.Tabs():
            with gr.TabItem("Color"):
                enable_color_limit = gr.Checkbox(label="Enable", value=False)
                palette_size_color = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
                quantization_methods_color = gr.Radio(choices=["Median Cut", "Maximum Coverage", "Fast Octree"], label="Colors Quantization Method", value="Median Cut")
                dither_methods_color = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None")
                k_means_color = gr.Checkbox(label="Enable k-means for color quantization", value=True)
            
            with gr.TabItem("Grayscale"):
                enable_grayscale = gr.Checkbox(label="Enable", value=False)
                palette_size_gray = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
                quantization_methods_gray = gr.Radio(choices=["Median Cut", "Maximum Coverage", "Fast Octree"], label="Colors Quantization Method", value="Median Cut")
                dither_methods_gray = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None")
                k_means_gray = gr.Checkbox(label="Enable k-means for color quantization", value=True)
            
            with gr.TabItem("Black and white"):
                enable_black_and_white = gr.Checkbox(label="Enable", value=False)
                inverse_black_and_white = gr.Checkbox(label="Inverse", value=False)
                threshold_black_and_white = gr.Slider(label="Threshold", minimum=1, maximum=256, step=1, value=128)
            
            with gr.TabItem("Custom color palette"):
                enable_custom_palette = gr.Checkbox(label="Enable", value=False)
                palette_image = gr.Image(label="Color palette image", type="pil")
                palette_size_custom = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16)
                dither_methods_custom = gr.Radio(choices=["None", "Floyd-Steinberg"], label="Colors Dither Method", value="None")

    # The rest of your code for setting up the app
    gallery.select(update_selection, outputs=[prompt, selected_info, selected_state])
    prompt.submit(fn=run_lora, inputs=[prompt, selected_state], outputs=[result])
    button.click(
    fn=run_and_postprocess, 
    inputs=[
        prompt, 
        selected_state, 
        enabled, 
        downscale, 
        need_rescale, 
        enable_color_limit, 
        palette_size_color, 
        quantization_methods_color, 
        dither_methods_color, 
        k_means_color, 
        enable_grayscale, 
        palette_size_gray, 
        quantization_methods_gray, 
        dither_methods_gray, 
        k_means_gray, 
        enable_black_and_white, 
        inverse_black_and_white, 
        threshold_black_and_white, 
        enable_custom_palette, 
        palette_image, 
        palette_size_custom, 
        dither_methods_custom
    ], 
    outputs=[result]
)
    
    app.queue(max_size=20, concurrency_count=5)
    app.launch()