import gradio as gr import modules.scripts as scripts from modules import images from modules.shared import opts from sd_webui_pixelart.utils import DITHER_METHODS, QUANTIZATION_METHODS, downscale_image, limit_colors, resize_image, convert_to_black_and_white, convert_to_grayscale class Script(scripts.Script): def title(self): return "Pixel art" def show(self, is_img2img): return scripts.AlwaysVisible def ui(self, is_img2img): quantization_methods = ['Median cut', 'Maximum coverage', 'Fast octree'] dither_methods = ['None', 'Floyd-Steinberg'] with gr.Accordion("Pixel art", open=False): with gr.Row(): enabled = gr.Checkbox(label="Enable", value=False) with gr.Column(): with gr.Row(): downscale = gr.Slider(label="Downscale", minimum=1, maximum=32, step=2, value=8) need_rescale = gr.Checkbox(label="Rescale to original size", value=True) with gr.Tabs(): with gr.TabItem("Color"): enable_color_limit = gr.Checkbox(label="Enable", value=False) number_of_colors = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16) quantization_method = gr.Radio(choices=quantization_methods, value=quantization_methods[0], label='Colors quantization method') dither_method = gr.Radio(choices=dither_methods, value=dither_methods[0], label='Colors dither method') use_k_means = gr.Checkbox(label="Enable k-means for color quantization", value=True) with gr.TabItem("Grayscale"): is_grayscale = gr.Checkbox(label="Enable", value=False) number_of_shades = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16) quantization_method_grayscale = gr.Radio(choices=quantization_methods, value=quantization_methods[0], label='Colors quantization method') dither_method_grayscale = gr.Radio(choices=dither_methods, value=dither_methods[0], label='Colors dither method') use_k_means_grayscale = gr.Checkbox(label="Enable k-means for color quantization", value=True) with gr.TabItem("Black and white"): with gr.Row(): is_black_and_white = gr.Checkbox(label="Enable", value=False) is_inversed_black_and_white = gr.Checkbox(label="Inverse", value=False) with gr.Row(): black_and_white_threshold = gr.Slider(label="Threshold", minimum=1, maximum=256, step=1, value=128) with gr.TabItem("Custom color palette"): use_color_palette = gr.Checkbox(label="Enable", value=False) palette_image=gr.Image(label="Color palette image", type="pil") palette_colors = gr.Slider(label="Palette Size (only for complex images)", minimum=1, maximum=256, step=1, value=16) dither_method_palette = gr.Radio(choices=dither_methods, value=dither_methods[0], label='Colors dither method') return [enabled, downscale, need_rescale, enable_color_limit, number_of_colors, quantization_method, dither_method, use_k_means, is_grayscale, number_of_shades, quantization_method_grayscale, dither_method_grayscale, use_k_means_grayscale, is_black_and_white, is_inversed_black_and_white, black_and_white_threshold, use_color_palette, palette_image, palette_colors, dither_method_palette] def postprocess( self, p, processed, enabled, downscale, need_rescale, enable_color_limit, number_of_colors, quantization_method, dither_method, use_k_means, is_grayscale, number_of_shades, quantization_method_grayscale, dither_method_grayscale, use_k_means_grayscale, is_black_and_white, is_inversed_black_and_white, black_and_white_threshold, use_color_palette, palette_image, palette_colors, dither_method_palette ): if not enabled: return dither = DITHER_METHODS[dither_method] quantize = QUANTIZATION_METHODS[quantization_method] dither_grayscale = DITHER_METHODS[dither_method_grayscale] quantize_grayscale = QUANTIZATION_METHODS[quantization_method_grayscale] dither_palette = DITHER_METHODS[dither_method_palette] def process_image(original_image): original_width, original_height = original_image.size if original_image.mode != "RGB": new_image = original_image.convert("RGB") else: new_image = original_image new_image = downscale_image(new_image, downscale) if use_color_palette: new_image = limit_colors( image=new_image, palette=palette_image, palette_colors=palette_colors, dither=dither_palette ) if is_black_and_white: new_image = convert_to_black_and_white(new_image, black_and_white_threshold, is_inversed_black_and_white) if is_grayscale: new_image = convert_to_grayscale(new_image) new_image = limit_colors( image=new_image, limit=int(number_of_shades), quantize=quantize_grayscale, dither=dither_grayscale, use_k_means=use_k_means_grayscale ) if enable_color_limit: new_image = limit_colors( image=new_image, limit=int(number_of_colors), quantize=quantize, dither=dither, use_k_means=use_k_means ) if need_rescale: new_image = resize_image(new_image, (original_width, original_height)) return new_image.convert('RGBA') for i in range(len(processed.images)): pixel_image = process_image(processed.images[i]) processed.images.append(pixel_image) images.save_image(pixel_image, p.outpath_samples, "pixel", processed.seed + i, processed.prompt, opts.samples_format, info= processed.info, p=p) return processed