import gradio as gr import requests import io from PIL import Image import json from image_processing import downscale_image, limit_colors, convert_to_grayscale, convert_to_black_and_white import logging class SomeClass: def __init__(self): self.images = [] with open('loras.json', 'r') as f: loras = json.load(f) def update_selection(selected_state: gr.SelectData): logging.debug(f"Inside update_selection, selected_state: {selected_state}") selected_lora_index = selected_state.index selected_lora = loras[selected_lora_index] new_placeholder = f"Type a prompt for {selected_lora['title']}" lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" return ( gr.update(placeholder=new_placeholder), updated_text, selected_state ) def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)): selected_lora_index = selected_state.index selected_lora = loras[selected_lora_index] api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}" payload = {"inputs": f"{prompt} {selected_lora['trigger_word']}", "parameters": {"negative_prompt": "bad art, ugly, watermark, deformed"}} response = requests.post(api_url, json=payload) if response.status_code == 200: original_image = Image.open(io.BytesIO(response.content)) processed = SomeClass() processed.images = [original_image] refined_image = processed.images[-1] return original_image, refined_image def apply_post_processing(image, downscale, limit_colors, grayscale, black_and_white): processed_image = image.copy() if downscale > 1: processed_image = downscale_image(processed_image, downscale) if limit_colors: processed_image = limit_colors(processed_image) if grayscale: processed_image = convert_to_grayscale(processed_image) if black_and_white: processed_image = convert_to_black_and_white(processed_image) return processed_image with gr.Blocks() as app: title = gr.Markdown("# artificialguybr LoRA portfolio") description = gr.Markdown("### This is a Pixel Art Generator using SD Loras.") selected_state = gr.State() with gr.Row(): gallery = gr.Gallery([(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=3) with gr.Column(): prompt_title = gr.Markdown("### Click on a LoRA in the gallery to create with it") selected_info = gr.Markdown("") with gr.Row(): prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA") button = gr.Button("Run") result = gr.Image(interactive=False, label="Generated Image") refined_result = gr.Image(interactive=False, label="Refined Generated Image") post_processed_result = gr.Image(interactive=False, label="Post-Processed Image") with gr.Tabs(): with gr.TabItem("Color"): enable_color_limit = gr.Checkbox(label="Enable", value=False) number_of_colors = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16) with gr.TabItem("Grayscale"): is_grayscale = gr.Checkbox(label="Enable", value=False) number_of_shades = gr.Slider(label="Palette Size", minimum=1, maximum=256, step=1, value=16) with gr.TabItem("Black and white"): is_black_and_white = gr.Checkbox(label="Enable", value=False) black_and_white_threshold = gr.Slider(label="Threshold", minimum=1, maximum=256, step=1, value=128) with gr.TabItem("Custom color palette"): use_color_palette = gr.Checkbox(label="Enable", value=False) palette_image = gr.Image(label="Color palette image", type="pil") palette_colors = gr.Slider(label="Palette Size (only for complex images)", minimum=1, maximum=256, step=1, value=16) with gr.TabItem("Post-Processing"): downscale = gr.Slider(label="Downscale", minimum=1, maximum=32, step=2, value=8) limit_colors = gr.Checkbox(label="Limit Colors") grayscale = gr.Checkbox(label="Grayscale") black_and_white = gr.Checkbox(label="Black and White") post_process_button = gr.Button("Apply Post-Processing") gallery.select(update_selection, outputs=[prompt, selected_info, selected_state]) prompt.submit(fn=run_lora, inputs=[prompt, selected_state], outputs=[result, refined_result]) post_process_button.click(fn=apply_post_processing, inputs=[refined_result, downscale, limit_colors, grayscale, black_and_white], outputs=[post_processed_result]) app.queue(max_size=20, concurrency_count=5) app.launch()