Spaces:
Sleeping
Sleeping
File size: 2,460 Bytes
9aa8e63 973996a 9aa8e63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import gradio as gr
import torch
from torchvision import transforms
from PIL import Image
import numpy as np
import os
from u2net import U2NET
import data_transforms
import torch.nn.functional as F
from skimage import io
from torchvision.transforms.functional import normalize
# Load the model
model = U2NET(3, 1)
model_path = "u2net.pth"
model.load_state_dict(torch.load(model_path, map_location="cpu"))
model.eval()
# Preprocess the image
def preprocess(image):
label_3 = np.zeros(image.shape)
label = np.zeros(label_3.shape[0:2])
if 3 == len(label_3.shape):
label = label_3[:, :, 0]
elif 2 == len(label_3.shape):
label = label_3
if 3 == len(image.shape) and 2 == len(label.shape):
label = label[:, :, np.newaxis]
elif 2 == len(image.shape) and 2 == len(label.shape):
image = image[:, :, np.newaxis]
label = label[:, :, np.newaxis]
transform = transforms.Compose([data_transforms.RescaleT(320), data_transforms.ToTensorLab(flag=0)])
sample = transform({"imidx": np.array([0]), "image": image, "label": label})
return sample
# Define the function to generate the mask
def generate_mask(image):
# Preprocess the image
image = np.array(image.convert("RGB"))
img = preprocess(image)
input_size = [1024, 1024]
im_shp = image.shape[0:2]
im_tensor = torch.tensor(image, dtype=torch.float32).permute(2, 0, 1)
im_tensor = F.upsample(torch.unsqueeze(im_tensor, 0), input_size, mode="bilinear").type(torch.uint8)
image = torch.divide(im_tensor, 255.0)
image = normalize(image, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
with torch.no_grad():
result = model(image)
result = torch.squeeze(F.upsample(result[0][0], im_shp, mode='bilinear'), 0)
ma = torch.max(result)
mi = torch.min(result)
result = (result - mi) / (ma - mi)
result = result.numpy()
output_mask = result[0]
output_mask = (output_mask - output_mask.min()) / (output_mask.max() - output_mask.min()) * 255
output_mask = output_mask.astype(np.uint8)
output_image = Image.fromarray(output_mask)
return output_image
# Create the Gradio interface
iface = gr.Interface(
fn=generate_mask,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Image(type="pil"),
title="U2NET Background Removal",
description="Upload an image and get the background mask"
)
if __name__ == "__main__":
iface.launch()
|