Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from torchvision import models | |
import torch.nn.functional as F | |
bce_loss = nn.BCELoss(size_average=True) | |
def muti_loss_fusion(preds, target): | |
loss0 = 0.0 | |
loss = 0.0 | |
for i in range(0,len(preds)): | |
# print("i: ", i, preds[i].shape) | |
if(preds[i].shape[2]!=target.shape[2] or preds[i].shape[3]!=target.shape[3]): | |
# tmp_target = _upsample_like(target,preds[i]) | |
tmp_target = F.interpolate(target, size=preds[i].size()[2:], mode='bilinear', align_corners=True) | |
loss = loss + bce_loss(preds[i],tmp_target) | |
else: | |
loss = loss + bce_loss(preds[i],target) | |
if(i==0): | |
loss0 = loss | |
return loss0, loss | |
fea_loss = nn.MSELoss(size_average=True) | |
kl_loss = nn.KLDivLoss(size_average=True) | |
l1_loss = nn.L1Loss(size_average=True) | |
smooth_l1_loss = nn.SmoothL1Loss(size_average=True) | |
def muti_loss_fusion_kl(preds, target, dfs, fs, mode='MSE'): | |
loss0 = 0.0 | |
loss = 0.0 | |
for i in range(0,len(preds)): | |
# print("i: ", i, preds[i].shape) | |
if(preds[i].shape[2]!=target.shape[2] or preds[i].shape[3]!=target.shape[3]): | |
# tmp_target = _upsample_like(target,preds[i]) | |
tmp_target = F.interpolate(target, size=preds[i].size()[2:], mode='bilinear', align_corners=True) | |
loss = loss + bce_loss(preds[i],tmp_target) | |
else: | |
loss = loss + bce_loss(preds[i],target) | |
if(i==0): | |
loss0 = loss | |
for i in range(0,len(dfs)): | |
if(mode=='MSE'): | |
loss = loss + fea_loss(dfs[i],fs[i]) ### add the mse loss of features as additional constraints | |
# print("fea_loss: ", fea_loss(dfs[i],fs[i]).item()) | |
elif(mode=='KL'): | |
loss = loss + kl_loss(F.log_softmax(dfs[i],dim=1),F.softmax(fs[i],dim=1)) | |
# print("kl_loss: ", kl_loss(F.log_softmax(dfs[i],dim=1),F.softmax(fs[i],dim=1)).item()) | |
elif(mode=='MAE'): | |
loss = loss + l1_loss(dfs[i],fs[i]) | |
# print("ls_loss: ", l1_loss(dfs[i],fs[i])) | |
elif(mode=='SmoothL1'): | |
loss = loss + smooth_l1_loss(dfs[i],fs[i]) | |
# print("SmoothL1: ", smooth_l1_loss(dfs[i],fs[i]).item()) | |
return loss0, loss | |
class REBNCONV(nn.Module): | |
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1): | |
super(REBNCONV,self).__init__() | |
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate,stride=stride) | |
self.bn_s1 = nn.BatchNorm2d(out_ch) | |
self.relu_s1 = nn.ReLU(inplace=True) | |
def forward(self,x): | |
hx = x | |
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx))) | |
return xout | |
## upsample tensor 'src' to have the same spatial size with tensor 'tar' | |
def _upsample_like(src,tar): | |
src = F.upsample(src,size=tar.shape[2:],mode='bilinear') | |
return src | |
### RSU-7 ### | |
class RSU7(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512): | |
super(RSU7,self).__init__() | |
self.in_ch = in_ch | |
self.mid_ch = mid_ch | |
self.out_ch = out_ch | |
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) ## 1 -> 1/2 | |
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1) | |
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2) | |
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1) | |
def forward(self,x): | |
b, c, h, w = x.shape | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx = self.pool3(hx3) | |
hx4 = self.rebnconv4(hx) | |
hx = self.pool4(hx4) | |
hx5 = self.rebnconv5(hx) | |
hx = self.pool5(hx5) | |
hx6 = self.rebnconv6(hx) | |
hx7 = self.rebnconv7(hx6) | |
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1)) | |
hx6dup = _upsample_like(hx6d,hx5) | |
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1)) | |
hx5dup = _upsample_like(hx5d,hx4) | |
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1)) | |
hx4dup = _upsample_like(hx4d,hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1)) | |
hx3dup = _upsample_like(hx3d,hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1)) | |
hx2dup = _upsample_like(hx2d,hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1)) | |
return hx1d + hxin | |
### RSU-6 ### | |
class RSU6(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU6,self).__init__() | |
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1) | |
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2) | |
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1) | |
def forward(self,x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx = self.pool3(hx3) | |
hx4 = self.rebnconv4(hx) | |
hx = self.pool4(hx4) | |
hx5 = self.rebnconv5(hx) | |
hx6 = self.rebnconv6(hx5) | |
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1)) | |
hx5dup = _upsample_like(hx5d,hx4) | |
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1)) | |
hx4dup = _upsample_like(hx4d,hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1)) | |
hx3dup = _upsample_like(hx3d,hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1)) | |
hx2dup = _upsample_like(hx2d,hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1)) | |
return hx1d + hxin | |
### RSU-5 ### | |
class RSU5(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU5,self).__init__() | |
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1) | |
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2) | |
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1) | |
def forward(self,x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx = self.pool3(hx3) | |
hx4 = self.rebnconv4(hx) | |
hx5 = self.rebnconv5(hx4) | |
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1)) | |
hx4dup = _upsample_like(hx4d,hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1)) | |
hx3dup = _upsample_like(hx3d,hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1)) | |
hx2dup = _upsample_like(hx2d,hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1)) | |
return hx1d + hxin | |
### RSU-4 ### | |
class RSU4(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU4,self).__init__() | |
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1) | |
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1) | |
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2) | |
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1) | |
def forward(self,x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx4 = self.rebnconv4(hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1)) | |
hx3dup = _upsample_like(hx3d,hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1)) | |
hx2dup = _upsample_like(hx2d,hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1)) | |
return hx1d + hxin | |
### RSU-4F ### | |
class RSU4F(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU4F,self).__init__() | |
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1) | |
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2) | |
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4) | |
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8) | |
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4) | |
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2) | |
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1) | |
def forward(self,x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx2 = self.rebnconv2(hx1) | |
hx3 = self.rebnconv3(hx2) | |
hx4 = self.rebnconv4(hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1)) | |
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1)) | |
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1)) | |
return hx1d + hxin | |
class myrebnconv(nn.Module): | |
def __init__(self, in_ch=3, | |
out_ch=1, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
dilation=1, | |
groups=1): | |
super(myrebnconv,self).__init__() | |
self.conv = nn.Conv2d(in_ch, | |
out_ch, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
groups=groups) | |
self.bn = nn.BatchNorm2d(out_ch) | |
self.rl = nn.ReLU(inplace=True) | |
def forward(self,x): | |
return self.rl(self.bn(self.conv(x))) | |
class U2NetGTEncoder(nn.Module): | |
def __init__(self,in_ch=1,out_ch=1): | |
super(U2NetGTEncoder,self).__init__() | |
self.conv_in = myrebnconv(in_ch,16,3,stride=2,padding=1) # nn.Conv2d(in_ch,64,3,stride=2,padding=1) | |
self.stage1 = RSU7(16,16,64) | |
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.stage2 = RSU6(64,16,64) | |
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.stage3 = RSU5(64,32,128) | |
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.stage4 = RSU4(128,32,256) | |
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.stage5 = RSU4F(256,64,512) | |
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.stage6 = RSU4F(512,64,512) | |
self.side1 = nn.Conv2d(64,out_ch,3,padding=1) | |
self.side2 = nn.Conv2d(64,out_ch,3,padding=1) | |
self.side3 = nn.Conv2d(128,out_ch,3,padding=1) | |
self.side4 = nn.Conv2d(256,out_ch,3,padding=1) | |
self.side5 = nn.Conv2d(512,out_ch,3,padding=1) | |
self.side6 = nn.Conv2d(512,out_ch,3,padding=1) | |
def compute_loss(self, preds, targets): | |
return muti_loss_fusion(preds,targets) | |
def forward(self,x): | |
hx = x | |
hxin = self.conv_in(hx) | |
# hx = self.pool_in(hxin) | |
#stage 1 | |
hx1 = self.stage1(hxin) | |
hx = self.pool12(hx1) | |
#stage 2 | |
hx2 = self.stage2(hx) | |
hx = self.pool23(hx2) | |
#stage 3 | |
hx3 = self.stage3(hx) | |
hx = self.pool34(hx3) | |
#stage 4 | |
hx4 = self.stage4(hx) | |
hx = self.pool45(hx4) | |
#stage 5 | |
hx5 = self.stage5(hx) | |
hx = self.pool56(hx5) | |
#stage 6 | |
hx6 = self.stage6(hx) | |
#side output | |
d1 = self.side1(hx1) | |
d1 = _upsample_like(d1,x) | |
d2 = self.side2(hx2) | |
d2 = _upsample_like(d2,x) | |
d3 = self.side3(hx3) | |
d3 = _upsample_like(d3,x) | |
d4 = self.side4(hx4) | |
d4 = _upsample_like(d4,x) | |
d5 = self.side5(hx5) | |
d5 = _upsample_like(d5,x) | |
d6 = self.side6(hx6) | |
d6 = _upsample_like(d6,x) | |
# d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1)) | |
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)], [hx1,hx2,hx3,hx4,hx5,hx6] | |
class U2NET(nn.Module): | |
def __init__(self,in_ch=3,out_ch=1): | |
super(U2NET,self).__init__() | |
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1) | |
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.stage1 = RSU7(64,32,64) | |
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.stage2 = RSU6(64,32,128) | |
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.stage3 = RSU5(128,64,256) | |
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.stage4 = RSU4(256,128,512) | |
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.stage5 = RSU4F(512,256,512) | |
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True) | |
self.stage6 = RSU4F(512,256,512) | |
# decoder | |
self.stage5d = RSU4F(1024,256,512) | |
self.stage4d = RSU4(1024,128,256) | |
self.stage3d = RSU5(512,64,128) | |
self.stage2d = RSU6(256,32,64) | |
self.stage1d = RSU7(128,16,64) | |
self.side1 = nn.Conv2d(64,out_ch,3,padding=1) | |
self.side2 = nn.Conv2d(64,out_ch,3,padding=1) | |
self.side3 = nn.Conv2d(128,out_ch,3,padding=1) | |
self.side4 = nn.Conv2d(256,out_ch,3,padding=1) | |
self.side5 = nn.Conv2d(512,out_ch,3,padding=1) | |
self.side6 = nn.Conv2d(512,out_ch,3,padding=1) | |
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1) | |
def compute_loss_kl(self, preds, targets, dfs, fs, mode='MSE'): | |
# return muti_loss_fusion(preds,targets) | |
return muti_loss_fusion_kl(preds, targets, dfs, fs, mode=mode) | |
def compute_loss(self, preds, targets): | |
# return muti_loss_fusion(preds,targets) | |
return muti_loss_fusion(preds, targets) | |
def forward(self,x): | |
hx = x | |
hxin = self.conv_in(hx) | |
#hx = self.pool_in(hxin) | |
#stage 1 | |
hx1 = self.stage1(hxin) | |
hx = self.pool12(hx1) | |
#stage 2 | |
hx2 = self.stage2(hx) | |
hx = self.pool23(hx2) | |
#stage 3 | |
hx3 = self.stage3(hx) | |
hx = self.pool34(hx3) | |
#stage 4 | |
hx4 = self.stage4(hx) | |
hx = self.pool45(hx4) | |
#stage 5 | |
hx5 = self.stage5(hx) | |
hx = self.pool56(hx5) | |
#stage 6 | |
hx6 = self.stage6(hx) | |
hx6up = _upsample_like(hx6,hx5) | |
#-------------------- decoder -------------------- | |
hx5d = self.stage5d(torch.cat((hx6up,hx5),1)) | |
hx5dup = _upsample_like(hx5d,hx4) | |
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1)) | |
hx4dup = _upsample_like(hx4d,hx3) | |
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1)) | |
hx3dup = _upsample_like(hx3d,hx2) | |
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1)) | |
hx2dup = _upsample_like(hx2d,hx1) | |
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1)) | |
#side output | |
d1 = self.side1(hx1d) | |
d1 = _upsample_like(d1,x) | |
d2 = self.side2(hx2d) | |
d2 = _upsample_like(d2,x) | |
d3 = self.side3(hx3d) | |
d3 = _upsample_like(d3,x) | |
d4 = self.side4(hx4d) | |
d4 = _upsample_like(d4,x) | |
d5 = self.side5(hx5d) | |
d5 = _upsample_like(d5,x) | |
d6 = self.side6(hx6) | |
d6 = _upsample_like(d6,x) | |
# d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1)) | |
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)],[hx1d,hx2d,hx3d,hx4d,hx5d,hx6] |