import gradio as gr import torch from torchvision import transforms from PIL import Image import numpy as np import os from u2net import U2NET import data_transforms import torch.nn.functional as F from skimage import io from torchvision.transforms.functional import normalize # Load the model model = U2NET(3, 1) model_path = "u2net.pth" model.load_state_dict(torch.load(model_path, map_location="cpu")) model.eval() # Preprocess the image def preprocess(image): label_3 = np.zeros(image.shape) label = np.zeros(label_3.shape[0:2]) if 3 == len(label_3.shape): label = label_3[:, :, 0] elif 2 == len(label_3.shape): label = label_3 if 3 == len(image.shape) and 2 == len(label.shape): label = label[:, :, np.newaxis] elif 2 == len(image.shape) and 2 == len(label.shape): image = image[:, :, np.newaxis] label = label[:, :, np.newaxis] transform = transforms.Compose([data_transforms.RescaleT(320), data_transforms.ToTensorLab(flag=0)]) sample = transform({"imidx": np.array([0]), "image": image, "label": label}) return sample # Generate the mask def generate_mask(image): # Preprocess the image image = np.array(image.convert("RGB")) img = preprocess(image) input_size = [1024, 1024] im_shp = image.shape[0:2] im_tensor = torch.tensor(image, dtype=torch.float32).permute(2, 0, 1) # Replace F.upsample with F.interpolate im_tensor = F.interpolate(torch.unsqueeze(im_tensor, 0), input_size, mode="bilinear").type(torch.uint8) image = torch.divide(im_tensor, 255.0) image = normalize(image, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) with torch.no_grad(): result = model(image) result = torch.squeeze(F.interpolate(result[0][0], im_shp, mode='bilinear'), 0) ma = torch.max(result) mi = torch.min(result) result = (result - mi) / (ma - mi) result = result.numpy() output_mask = result[0] output_mask = (output_mask - output_mask.min()) / (output_mask.max() - output_mask.min()) * 255 output_mask = output_mask.astype(np.uint8) return output_mask def predict(image): # Generate the mask mask = generate_mask(image) # Convert the image to RGBA (to support transparency) image_rgba = image.convert("RGBA") # Create a binary mask from the generated mask and resize it to the image size mask = Image.fromarray(mask).resize(image.size).convert("L") # Convert to grayscale # Create a new image with transparency (RGBA) for the output with transparent background transparent_image = Image.new("RGBA", image.size) transparent_image.paste(image_rgba, mask=mask) # Create foreground and background masks red_foreground = Image.new("RGBA", image.size, (255, 0, 0, 128)) # Red foreground with 50% opacity blue_background = Image.new("RGBA", image.size, (0, 0, 255, 128)) # Blue background with 50% opacity # Create an empty overlay image overlay_image = Image.new("RGBA", image.size) # Overlay the red and blue masks based on the mask overlay_image.paste(blue_background, (0, 0)) # Fill the entire overlay with blue overlay_image.paste(red_foreground, (0, 0), mask=mask) # Paste red where mask is white # Combine the original image with the overlay at 50% opacity combined_image = Image.blend(image_rgba, overlay_image, alpha=0.5) return transparent_image, combined_image # Create the Gradio interface with two outputs iface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=[ gr.Image(type="pil", label="Transparent Background", image_mode="RGBA", format="png"), # Transparent output gr.Image(type="pil", label="Overlay with Colors", image_mode="RGBA", format="png"), # Colored overlay output ], title="Background Removal with U2NET", description="Upload an image to remove the background and visualize it with an overlay." ) if __name__ == "__main__": iface.launch()