import gradio as gr import torch from torchvision import transforms from PIL import Image import numpy as np import os from u2net import U2NET import data_transforms import torch.nn.functional as F from skimage import io from torchvision.transforms.functional import normalize # Load the model model = U2NET(3, 1) model_path = "u2net.pth" model.load_state_dict(torch.load(model_path, map_location="cpu")) model.eval() # Preprocess the image def preprocess(image): label_3 = np.zeros(image.shape) label = np.zeros(label_3.shape[0:2]) if 3 == len(label_3.shape): label = label_3[:, :, 0] elif 2 == len(label_3.shape): label = label_3 if 3 == len(image.shape) and 2 == len(label.shape): label = label[:, :, np.newaxis] elif 2 == len(image.shape) and 2 == len(label.shape): image = image[:, :, np.newaxis] label = label[:, :, np.newaxis] transform = transforms.Compose([data_transforms.RescaleT(320), data_transforms.ToTensorLab(flag=0)]) sample = transform({"imidx": np.array([0]), "image": image, "label": label}) return sample # Generate the mask def generate_mask(image): # Preprocess the image image = np.array(image.convert("RGB")) img = preprocess(image) input_size = [1024, 1024] im_shp = image.shape[0:2] im_tensor = torch.tensor(image, dtype=torch.float32).permute(2, 0, 1) # Replace F.upsample with F.interpolate im_tensor = F.interpolate(torch.unsqueeze(im_tensor, 0), input_size, mode="bilinear").type(torch.uint8) image = torch.divide(im_tensor, 255.0) image = normalize(image, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) with torch.no_grad(): result = model(image) result = torch.squeeze(F.interpolate(result[0][0], im_shp, mode='bilinear'), 0) ma = torch.max(result) mi = torch.min(result) result = (result - mi) / (ma - mi) result = result.numpy() output_mask = result[0] output_mask = (output_mask - output_mask.min()) / (output_mask.max() - output_mask.min()) * 255 output_mask = output_mask.astype(np.uint8) return output_mask # Define the final predict method to overlay the mask def predict(image): # Generate the mask mask = generate_mask(image) # Convert the image to RGBA (to support transparency) image = image.convert("RGBA") # Convert the mask into a binary mask where 255 is kept and 0 is transparent mask = Image.fromarray(mask).resize(image.size).convert("L") # Convert to grayscale (L mode) # Create a new image with transparency (RGBA) transparent_image = Image.new("RGBA", image.size) # Use the mask as transparency: paste the original image where the mask is white transparent_image.paste(image, mask=mask) return transparent_image # Create the Gradio interface with custom output size for the display only (not affecting the saved image) iface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil", tool="editor", label="Edited Image"), # Adjust the box size title="Background Removal with U2NET", description="Upload an image and remove the background" ) if __name__ == "__main__": iface.launch()