Spaces:
Sleeping
Sleeping
Aryan Wadhawan
commited on
Commit
β’
0cffe6d
1
Parent(s):
3e7b6ee
Implemented everything
Browse files
app.py
CHANGED
@@ -8,26 +8,17 @@ import io
|
|
8 |
import base64
|
9 |
from strsimpy.jaro_winkler import JaroWinkler
|
10 |
|
11 |
-
# base64 to audio β
|
12 |
-
# audio to transcription β
|
13 |
-
# audio to text β
|
14 |
-
# text to phoneme β
|
15 |
-
# accuracy = jarowinkler(transcription, phoneme) β
|
16 |
-
# band = getBandFromAccuracy(accuracy) β
|
17 |
-
# return accuracy, band β
|
18 |
|
19 |
-
|
20 |
-
def lark(audioAsB64):
|
21 |
-
# base64 to wav data conversion
|
22 |
wav_data = base64.b64decode(audioAsB64.encode("utf-8"))
|
23 |
-
|
24 |
-
# audio to transcription
|
25 |
processor = Wav2Vec2Processor.from_pretrained(
|
26 |
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
|
27 |
)
|
28 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
29 |
|
30 |
-
waveform, sample_rate = librosa.load(
|
|
|
|
|
31 |
|
32 |
input_values = processor(
|
33 |
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
@@ -37,55 +28,68 @@ def lark(audioAsB64):
|
|
37 |
logits = model(input_values).logits
|
38 |
|
39 |
predicted_ids = torch.argmax(logits, dim=-1)
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
45 |
|
46 |
-
input_values =
|
47 |
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
48 |
).input_values
|
49 |
|
50 |
logits = model(input_values).logits
|
51 |
|
52 |
predicted_ids = torch.argmax(logits, dim=-1)
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
graphemeToPhonemeTranscription =
|
|
|
57 |
|
58 |
-
# accuracy = jaroWinkler(transcription, phoneme)
|
59 |
|
|
|
60 |
jarowinkler = JaroWinkler()
|
61 |
-
similarity_score = jarowinkler.similarity(
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
return 7
|
73 |
-
elif similarity_score >= 0.65:
|
74 |
-
return 6
|
75 |
-
elif similarity_score >= 0.60:
|
76 |
-
return 5
|
77 |
-
elif similarity_score >= 0.46:
|
78 |
-
return 4
|
79 |
-
elif similarity_score >= 0.35:
|
80 |
-
return 3
|
81 |
-
elif similarity_score >= 0.1:
|
82 |
-
return 2
|
83 |
-
else:
|
84 |
-
return 1
|
85 |
-
|
86 |
-
IELTSband = getBandFromSimilarityScore(similarity_score)
|
87 |
-
|
88 |
-
return [similarity_score, IELTSband, speechToTextTranscripition]
|
89 |
|
90 |
|
91 |
iface = gr.Interface(fn=lark, inputs="text", outputs=["text", "text", "text"])
|
|
|
8 |
import base64
|
9 |
from strsimpy.jaro_winkler import JaroWinkler
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
def speechToPhonemeWS(audioAsB64):
|
|
|
|
|
13 |
wav_data = base64.b64decode(audioAsB64.encode("utf-8"))
|
|
|
|
|
14 |
processor = Wav2Vec2Processor.from_pretrained(
|
15 |
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
|
16 |
)
|
17 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
18 |
|
19 |
+
waveform, sample_rate = librosa.load(
|
20 |
+
io.BytesIO(wav_data), sr=16000
|
21 |
+
) # Downsample 44.1kHz to 8kHz
|
22 |
|
23 |
input_values = processor(
|
24 |
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
|
|
28 |
logits = model(input_values).logits
|
29 |
|
30 |
predicted_ids = torch.argmax(logits, dim=-1)
|
31 |
+
transcription = processor.batch_decode(predicted_ids)
|
32 |
+
speechToPhonemeTranscription = transcription[0]
|
33 |
+
speechToPhonemeTranscription = speechToPhonemeTranscription.replace(" ", "")
|
34 |
+
return speechToPhonemeTranscription
|
35 |
+
|
36 |
+
|
37 |
+
def speechToTextToPhonemeWS(audioAsB64):
|
38 |
+
wav_data = base64.b64decode(audioAsB64.encode("utf-8"))
|
39 |
|
40 |
+
waveform, sample_rate = librosa.load(
|
41 |
+
io.BytesIO(wav_data), sr=16000
|
42 |
+
) # Downsample 44.1kHz to 8kHz
|
43 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
44 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
45 |
|
46 |
+
input_values = processor(
|
47 |
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
48 |
).input_values
|
49 |
|
50 |
logits = model(input_values).logits
|
51 |
|
52 |
predicted_ids = torch.argmax(logits, dim=-1)
|
53 |
+
speechToTextTranscription = processor.batch_decode(predicted_ids)
|
54 |
|
55 |
+
graphemeToPhonemeTranscription = phonemizer.phonemize(speechToTextTranscription[0])
|
56 |
+
graphemeToPhonemeTranscription = graphemeToPhonemeTranscription.replace(" ", "")
|
57 |
+
return [speechToTextTranscription[0], graphemeToPhonemeTranscription]
|
58 |
|
|
|
59 |
|
60 |
+
def similarity(S2P, G2P2T):
|
61 |
jarowinkler = JaroWinkler()
|
62 |
+
similarity_score = jarowinkler.similarity(S2P, G2P2T)
|
63 |
+
return similarity_score
|
64 |
+
|
65 |
+
|
66 |
+
def similarityScoreToBand(similarity_score):
|
67 |
+
if similarity_score >= 0.91:
|
68 |
+
return 9
|
69 |
+
elif similarity_score >= 0.81:
|
70 |
+
return 8
|
71 |
+
elif similarity_score >= 0.73:
|
72 |
+
return 7
|
73 |
+
elif similarity_score >= 0.65:
|
74 |
+
return 6
|
75 |
+
elif similarity_score >= 0.60:
|
76 |
+
return 5
|
77 |
+
elif similarity_score >= 0.46:
|
78 |
+
return 4
|
79 |
+
elif similarity_score >= 0.35:
|
80 |
+
return 3
|
81 |
+
elif similarity_score >= 0.1:
|
82 |
+
return 2
|
83 |
+
else:
|
84 |
+
return 1
|
85 |
|
86 |
+
|
87 |
+
def lark(audioAsB64):
|
88 |
+
s2p = speechToPhonemeWS(audioAsB64)
|
89 |
+
[s2t, s2t2p] = speechToTextToPhonemeWS(audioAsB64)
|
90 |
+
ss = similarity(s2t2p, s2p)
|
91 |
+
band = similarityScoreToBand(ss)
|
92 |
+
return [ss, band, s2t]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
|
95 |
iface = gr.Interface(fn=lark, inputs="text", outputs=["text", "text", "text"])
|