Spaces:
Sleeping
Sleeping
Aryan Wadhawan
commited on
Commit
β’
e59b0bd
1
Parent(s):
a7fd32e
Implemented everything
Browse files- app.py +61 -7
- requirements.txt +2 -1
app.py
CHANGED
@@ -3,23 +3,31 @@ from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
|
3 |
import torch
|
4 |
import phonemizer
|
5 |
import librosa
|
|
|
6 |
import io
|
7 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def lark(audioAsB64):
|
11 |
# base64 to wav data conversion
|
12 |
wav_data = base64.b64decode(audioAsB64.encode("utf-8"))
|
13 |
|
14 |
-
#
|
15 |
processor = Wav2Vec2Processor.from_pretrained(
|
16 |
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
|
17 |
)
|
18 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
19 |
|
20 |
-
waveform, sample_rate = librosa.load(
|
21 |
-
io.BytesIO(wav_data), sr=16000
|
22 |
-
) # Downsample 44.1kHz to 8kHz
|
23 |
|
24 |
input_values = processor(
|
25 |
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
@@ -29,10 +37,56 @@ def lark(audioAsB64):
|
|
29 |
logits = model(input_values).logits
|
30 |
|
31 |
predicted_ids = torch.argmax(logits, dim=-1)
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
return
|
35 |
|
36 |
|
37 |
-
iface = gr.Interface(fn=lark, inputs="text", outputs="text")
|
38 |
iface.launch()
|
|
|
3 |
import torch
|
4 |
import phonemizer
|
5 |
import librosa
|
6 |
+
import math
|
7 |
import io
|
8 |
import base64
|
9 |
+
from strsimpy.jaro_winkler import JaroWinkler
|
10 |
+
|
11 |
+
# base64 to audio β
|
12 |
+
# audio to transcription β
|
13 |
+
# audio to text β
|
14 |
+
# text to phoneme β
|
15 |
+
# accuracy = jarowinkler(transcription, phoneme) β
|
16 |
+
# band = getBandFromAccuracy(accuracy) β
|
17 |
+
# return accuracy, band β
|
18 |
|
19 |
|
20 |
def lark(audioAsB64):
|
21 |
# base64 to wav data conversion
|
22 |
wav_data = base64.b64decode(audioAsB64.encode("utf-8"))
|
23 |
|
24 |
+
# audio to transcription
|
25 |
processor = Wav2Vec2Processor.from_pretrained(
|
26 |
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
|
27 |
)
|
28 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
29 |
|
30 |
+
waveform, sample_rate = librosa.load(io.BytesIO(wav_data), sr=16000)
|
|
|
|
|
31 |
|
32 |
input_values = processor(
|
33 |
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
|
|
37 |
logits = model(input_values).logits
|
38 |
|
39 |
predicted_ids = torch.argmax(logits, dim=-1)
|
40 |
+
speechToPhonemeTranscription = processor.batch_decode(predicted_ids)[0]
|
41 |
+
|
42 |
+
# audio to text
|
43 |
+
processorSTT = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
44 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
45 |
+
|
46 |
+
input_values = processorSTT(
|
47 |
+
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
48 |
+
).input_values
|
49 |
+
|
50 |
+
logits = model(input_values).logits
|
51 |
+
|
52 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
53 |
+
speechToTextTranscripition = processor.batch_decode(predicted_ids)[0]
|
54 |
+
|
55 |
+
# text to phoneme
|
56 |
+
graphemeToPhonemeTranscription = phonemizer.phonemize(speechToTextTranscripition)
|
57 |
+
|
58 |
+
# accuracy = jaroWinkler(transcription, phoneme)
|
59 |
+
|
60 |
+
jarowinkler = JaroWinkler()
|
61 |
+
similarity_score = jarowinkler.similarity(
|
62 |
+
speechToPhonemeTranscription, graphemeToPhonemeTranscription
|
63 |
+
)
|
64 |
+
|
65 |
+
# ielts pronunciation band estimation
|
66 |
+
def getBandFromSimilarityScore(similarity_score):
|
67 |
+
if similarity_score >= 0.91:
|
68 |
+
return 9
|
69 |
+
elif similarity_score >= 0.81:
|
70 |
+
return 8
|
71 |
+
elif similarity_score >= 0.73:
|
72 |
+
return 7
|
73 |
+
elif similarity_score >= 0.65:
|
74 |
+
return 6
|
75 |
+
elif similarity_score >= 0.60:
|
76 |
+
return 5
|
77 |
+
elif similarity_score >= 0.46:
|
78 |
+
return 4
|
79 |
+
elif similarity_score >= 0.35:
|
80 |
+
return 3
|
81 |
+
elif similarity_score >= 0.1:
|
82 |
+
return 2
|
83 |
+
else:
|
84 |
+
return 1
|
85 |
+
|
86 |
+
IELTSband = getBandFromSimilarityScore(similarity_score)
|
87 |
|
88 |
+
return [similarity_score, IELTSband]
|
89 |
|
90 |
|
91 |
+
iface = gr.Interface(fn=lark, inputs="text", outputs=["text", "text"])
|
92 |
iface.launch()
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
phonemizer
|
2 |
librosa
|
3 |
transformers
|
4 |
-
torch
|
|
|
|
1 |
phonemizer
|
2 |
librosa
|
3 |
transformers
|
4 |
+
torch
|
5 |
+
strsimpy
|