Spaces:
Sleeping
Sleeping
# Import required libraries | |
import os | |
import pandas as pd | |
import streamlit as st | |
from transformers import pipeline | |
from sentence_transformers import SentenceTransformer, util | |
import requests | |
import json | |
# Configure Hugging Face API token securely | |
api_key = os.getenv("HF_API_KEY") | |
# Load the CSV dataset | |
try: | |
data = pd.read_csv('genetic-Final.csv') | |
except FileNotFoundError: | |
st.error("Dataset file not found. Please upload it to this directory.") | |
# Initialize Sentence Transformer model for RAG-based retrieval | |
retriever_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
# Preprocess the dataset for embeddings | |
if 'combined_description' not in data.columns: | |
data['combined_description'] = ( | |
data['Symptoms'].fillna('') + " " + | |
data['Severity Level'].fillna('') + " " + | |
data['Risk Assessment'].fillna('') + " " + | |
data['Treatment Options'].fillna('') + " " + | |
data['Suggested Medical Tests'].fillna('') + " " + | |
data['Minimum Values for Medical Tests'].fillna('') + " " + | |
data['Emergency Treatment'].fillna('') | |
) | |
# Generate embeddings for the combined description if not already done | |
if 'embeddings' not in data.columns: | |
data['embeddings'] = data['combined_description'].apply(lambda x: retriever_model.encode(x).tolist()) | |
# Function to retrieve relevant information based on user query | |
def get_relevant_info(query, top_k=3): | |
query_embedding = retriever_model.encode(query) | |
similarities = [util.cos_sim(query_embedding, doc_emb)[0][0].item() for doc_emb in data['embeddings']] | |
top_indices = sorted(range(len(similarities)), key=lambda i: similarities[i], reverse=True)[:top_k] | |
return data.iloc[top_indices] | |
# Function to generate response using Hugging Face Model API | |
# def generate_response(input_text, relevant_info): | |
# # Concatenate the relevant information as context for the model | |
# context = "\n".join(relevant_info['combined_description'].tolist()) | |
# input_with_context = f"Context: {context}\n\nUser Query: {input_text}" | |
# api_url = "https://api-inference.huggingface.co/models/m42-health/Llama3-Med42-8B" | |
# headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACEHUB_API_TOKEN')}"} | |
# payload = {"inputs": input_with_context} | |
# try: | |
# response = requests.post(api_url, headers=headers, json=payload) | |
# response_data = response.json() | |
# if isinstance(response_data, list) and "generated_text" in response_data[0]: | |
# return response_data[0]["generated_text"] | |
# else: | |
# return "Unexpected response format from API." | |
# except Exception as e: | |
# st.error(f"Error during API request: {e}") | |
# return "Error processing your request." | |
def generate_response(input_text, relevant_info): | |
# Concatenate the relevant information as context for the model | |
context = "\n".join(relevant_info['combined_description'].tolist()) | |
input_with_context = f"Context: {context}\n\nUser Query: {input_text}" | |
api_url = "https://api-inference.huggingface.co/models/m42-health/Llama3-Med42-8B" | |
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACEHUB_API_TOKEN')}"} | |
payload = {"inputs": input_with_context} | |
try: | |
response = requests.post(api_url, headers=headers, json=payload) | |
response_data = response.json() | |
# Print or display the raw response data | |
st.write("Raw API response:", response_data) | |
# Check and parse the response | |
if isinstance(response_data, list) and "generated_text" in response_data[0]: | |
return response_data[0]["generated_text"] | |
else: | |
return "Unexpected response format from API." | |
except Exception as e: | |
st.error(f"Error during API request: {e}") | |
return "Error processing your request." | |
# Check and parse the response if it's a single JSON object | |
if isinstance(response_data, dict) and "generated_text" in response_data: | |
return response_data["generated_text"] | |
# Streamlit UI for the FAQ Chatbot | |
def main(): | |
st.title("Medical FAQ Chatbot") | |
st.sidebar.header("Ask a Question or Upload a Medical Report") | |
# Text input for user queries | |
user_query = st.sidebar.text_input("Type your medical question") | |
# File uploader for medical report (optional) | |
uploaded_file = st.sidebar.file_uploader("Upload a medical report (optional)", type=["txt", "pdf", "csv"]) | |
# Process the query if provided | |
if user_query: | |
# Retrieve relevant information from dataset | |
relevant_info = get_relevant_info(user_query) | |
# Generate a combined FAQ-style response | |
faq_response = generate_response(user_query, relevant_info) | |
st.write("### FAQ Response:") | |
st.write(faq_response) | |
# Process the uploaded file if any | |
if uploaded_file: | |
# Placeholder for handling file analysis | |
st.write("### Uploaded Report Analysis:") | |
report_text = "Extracted report content here" # Placeholder for file processing logic | |
st.write(report_text) | |
if __name__ == "__main__": | |
main() | |