Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from diffusers.utils import load_image | |
import spaces | |
from panna import ControlNetSD2 | |
model = ControlNetSD2(condition_type="canny") | |
title = ("# [ControlNet XL](https://huggingface.co/docs/diffusers/api/pipelines/controlnet_sdxl) (Canny Edge Conditioning)\n" | |
"The demo is part of [panna](https://github.com/asahi417/panna) project.") | |
example_files = [] | |
for n in range(1, 10): | |
load_image(f"https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/resolve/main/assets/examples/demo{n:0>2}.jpg").save(f"demo{n:0>2}.jpg") | |
example_files.append(f"demo{n:0>2}.jpg") | |
def infer(init_image, prompt, negative_prompt, seed, guidance_scale, controlnet_conditioning_scale, num_inference_steps): | |
return model( | |
image=init_image, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
num_inference_steps=num_inference_steps, | |
seed=seed | |
) | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
with gr.Row(): | |
prompt = gr.Text(label="Prompt", show_label=True, max_lines=1, placeholder="Enter your prompt", container=False) | |
run_button = gr.Button("Run", scale=0) | |
with gr.Row(): | |
init_image = gr.Image(label="Input Image", type='pil') | |
result = gr.Image(label="Result") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text(label="Negative Prompt", max_lines=1, placeholder="Enter a negative prompt") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=1_000_000, step=1, value=0) | |
with gr.Row(): | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5) | |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning scale", minimum=0.0, maximum=1.0, step=0.05, value=0.5) | |
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=50) | |
examples = gr.Examples(examples=example_files, inputs=[init_image]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit, negative_prompt.submit], | |
fn=infer, | |
inputs=[init_image, prompt, negative_prompt, seed, guidance_scale, controlnet_conditioning_scale, num_inference_steps], | |
outputs=[result] | |
) | |
demo.launch(server_name="0.0.0.0") | |