from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader from llama_index import download_loader from pandasai.llm.openai import OpenAI from matplotlib import pyplot as plt import streamlit as st import pandas as pd import os documents_folder = "./documents" # Load PandasAI loader, Which is a wrapper over PandasAI library PandasAIReader = download_loader("PandasAIReader") st.title("Welcome to `ChatwithDocs`") st.header("Interact with Documents such as `PDFs/CSV/Docs` using the power of LLMs\nPowered by `LlamaIndex🦙` \nCheckout the [GITHUB Repo Here](https://github.com/anoopshrma/Chat-with-Docs) and Leave a star⭐") def get_csv_result(df, query): reader = PandasAIReader(llm=csv_llm) response = reader.run_pandas_ai( df, query, is_conversational_answer=False ) return response def save_file(doc): fn = os.path.basename(doc.name) # open read and write the file into the server open(documents_folder+'/'+fn, 'wb').write(doc.read()) # Check for the current filename, If new filename # clear the previous cached vectors and update the filename # with current name if st.session_state.get('file_name'): if st.session_state.file_name != fn: st.cache_resource.clear() st.session_state['file_name'] = fn else: st.session_state['file_name'] = fn return fn def remove_file(file_path): # Remove the file from the Document folder once # vectors are created if os.path.isfile(documents_folder+'/'+file_path): os.remove(documents_folder+'/'+file_path) @st.cache_resource def create_index(): # Create vectors for the file stored under Document folder. # NOTE: You can create vectors for multiple files at once. documents = SimpleDirectoryReader(documents_folder).load_data() index = GPTVectorStoreIndex.from_documents(documents) return index def query_doc(vector_index, query): # Applies Similarity Algo, Finds the nearest match and # take the match and user query to OpenAI for rich response query_engine = vector_index.as_query_engine() response = query_engine.query(query) return response api_key = st.text_input("Enter your OpenAI API key here:", type="password") if api_key: os.environ['OPENAI_API_KEY'] = api_key csv_llm = OpenAI(api_token=api_key) tab1, tab2= st.tabs(["CSV", "PDFs/Docs"]) with tab1: st.write("Chat with CSV files using PandasAI loader with LlamaIndex") input_csv = st.file_uploader("Upload your CSV file", type=['csv']) if input_csv is not None: st.info("CSV Uploaded Successfully") df = pd.read_csv(input_csv) st.dataframe(df, use_container_width=True) st.divider() input_text = st.text_area("Ask your query") if input_text is not None: if st.button("Send"): st.info("Your query: "+ input_text) with st.spinner('Processing your query...'): response = get_csv_result(df, input_text) if plt.get_fignums(): st.pyplot(plt.gcf()) else: st.success(response) with tab2: st.write("Chat with PDFs/Docs") input_doc = st.file_uploader("Upload your Docs") if input_doc is not None: st.info("Doc Uploaded Successfully") file_name = save_file(input_doc) index = create_index() remove_file(file_name) st.divider() input_text = st.text_area("Ask your question") if input_text is not None: if st.button("Ask"): st.info("Your query: \n" +input_text) with st.spinner("Processing your query.."): response = query_doc(index, input_text) print(response) st.success(response) st.divider() # Shows the source documents context which # has been used to prepare the response st.write("Source Documents") st.write(response.get_formatted_sources())