Spaces:
Running
Running
File size: 3,932 Bytes
3888ab7 2278710 3888ab7 06d58f4 3888ab7 c04453c 0ef2079 58881e0 c04453c 58881e0 819a468 d85cb0d 38457ff 8c8ea80 3888ab7 8c8ea80 4b3e8cb db7f99f 4b3e8cb eba33c8 06d58f4 38457ff 06d58f4 41327e9 3888ab7 1801257 06d58f4 3888ab7 eec4853 3888ab7 eec4853 1aa6fb6 eec4853 3888ab7 1aa6fb6 3888ab7 e469266 3888ab7 1aa6fb6 3888ab7 1aa6fb6 3888ab7 1aa6fb6 3888ab7 56ab42f 3888ab7 56ab42f 3888ab7 56ab42f c04453c 3888ab7 4b3e8cb 06d58f4 c04453c 8c8ea80 4b3e8cb d85cb0d 7dd6e93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import argparse
import glob
import os.path
import gradio as gr
import pickle
import tqdm
import json
import MIDI
from midi_synthesizer import synthesis
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
def run(search_prompt, mid=None, progress=gr.Progress()):
if mid == None:
for m in progress.tqdm(meta_data):
mid_seq = m[1][17:-1]
mid_seq_ticks = m[1][16][1]
mdata = m[1][:16]
break
elif mid is not None:
mid_seq = MIDI.midi2score(mid)
x = []
y = []
c = []
colors = ['red', 'yellow', 'green', 'cyan',
'blue', 'pink', 'orange', 'purple',
'gray', 'white', 'gold', 'silver',
'lightgreen', 'indigo', 'maroon', 'turquoise']
for s in [m for m in mid_seq if m[0] == 'note']:
x.append(s[1])
y.append(s[4])
c.append(colors[s[3]])
plt.close()
plt.figure(figsize=(14,5))
ax=plt.axes(title='MIDI Search Plot')
ax.set_facecolor('black')
plt.scatter(x,y, c=c)
plt.xlabel("Time")
plt.ylabel("Pitch")
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi([mid_seq_ticks, mid_seq]))
audio = synthesis(MIDI.score2opus([mid_seq_ticks, mid_seq]), soundfont_path)
yield mdata, "output.mid", (44100, audio), plt
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
parser.add_argument("--max-gen", type=int, default=1024, help="max")
opt = parser.parse_args()
soundfont_path = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
meta_data_path = "meta-data/LAMD_META_10000.pickle"
models_info = {"generic pretrain model": ["skytnt/midi-model", ""],
"j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"],
"touhou finetune model": ["skytnt/midi-model-ft", "touhou/"]}
print('Loading meta-data...')
with open(meta_data_path, 'rb') as f:
meta_data = pickle.load(f)
print('Done!')
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>MIDI Search</h1>")
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.MIDI-Search&style=flat)\n\n"
"MIDI Search and Explore\n\n"
"Demo for [MIDI Search](https://github.com/asigalov61)\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/MIDI-Search/blob/main/demo.ipynb)"
" for faster running and longer generation"
)
with gr.Tabs():
with gr.TabItem("instrument prompt") as tab1:
search_prompt = gr.Textbox(label="search prompt")
with gr.TabItem("midi prompt") as tab2:
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary")
with gr.Accordion("options", open=False):
input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
search_btn = gr.Button("search", variant="primary")
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
output_midi = gr.File(label="output midi", file_types=[".mid"])
output_midi_seq = gr.Textbox(label="output midi metadata")
output_plot = gr.Plot(label="output midi plot")
run_event = search_btn.click(run, [search_prompt],
[output_midi_seq, output_midi, output_audio, output_plot])
app.queue(1).launch(server_port=opt.port, share=opt.share, inbrowser=True) |