File size: 16,108 Bytes
c1fc4e4 06f7611 c1fc4e4 0d7d207 c1fc4e4 0d7d207 6b75c99 0d7d207 33d78dd 1ae6f31 c1fc4e4 0d7d207 356c43a 1e4e336 ecd66de 115a10b 7594447 115a10b bf1555a 356c43a 0d7d207 19b530f 1e4e336 ecd66de 19b530f 74d6d93 19b530f ea63137 df2f0e4 19b530f 6c4cb55 19b530f 09fc820 0d7d207 09fc820 f8c0b9d 09fc820 f8c0b9d 09fc820 f8c0b9d ecd66de f8c0b9d ecd66de f8c0b9d ecd66de 09fc820 6c4cb55 09fc820 6c4cb55 f63089f 09fc820 f63089f c3563d1 b4ffaa9 c3563d1 f63089f c3563d1 b4ffaa9 c3563d1 b7bd104 7594447 74d6d93 7594447 92e004d 7594447 c3563d1 f63089f c3563d1 b4ffaa9 c3563d1 b4ffaa9 c3563d1 f63089f 51e919f b4ffaa9 51e919f fb790c1 51e919f fb790c1 51e919f c292aa6 bc9a4ca 1b74287 51e919f 1b74287 bc9a4ca 51e919f bc9a4ca 51e919f 1b74287 bc9a4ca 1b74287 bc9a4ca 1b74287 51e919f 1b74287 bc9a4ca 1b74287 bc9a4ca 1b74287 bc9a4ca 0d7d207 c3563d1 0d7d207 f3a0ea5 19b530f 33d78dd 7fd51d1 33d78dd f3a0ea5 33d78dd f3a0ea5 33d78dd d1f9189 33d78dd f3a0ea5 33d78dd f3a0ea5 33d78dd f3a0ea5 0d7d207 06f7611 0d7d207 06f7611 c1fc4e4 9a50d02 c1fc4e4 1e4e336 d894956 115a10b 7d3e6c3 115a10b 0d7d207 06f7611 0d7d207 c1fc4e4 510fa10 2b29c59 510fa10 0d7d207 115a10b 1e4e336 ecd66de 115a10b 7594447 115a10b 510fa10 115a10b c1fc4e4 0d7d207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
# =================================================================================================
# https://huggingface.co/spaces/asigalov61/Monophonic-MIDI-Melody-Harmonizer
# =================================================================================================
import os
import time as reqtime
import datetime
from pytz import timezone
import gradio as gr
import os
import random
from tqdm import tqdm
import TMIDIX
import HaystackSearch
from midi_to_colab_audio import midi_to_colab_audio
# =================================================================================================
def Generate_Chords_Progression(minimum_song_length_in_chords_chunks,
chords_chunks_memory_ratio,
chord_time_step,
merge_chords_notes,
melody_MIDI_patch_number,
chords_progression_MIDI_patch_number,
base_MIDI_patch_number
):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('Requested settings:')
print('Minimum song length in chords chunks:', minimum_song_length_in_chords_chunks)
print('Chords chunks memory ratio:', chords_chunks_memory_ratio)
print('Chord time step:', chord_time_step)
print('Merge chords notes max time:', merge_chords_notes)
print('Melody MIDI patch number:', melody_MIDI_patch_number)
print('Chords progression MIDI patch number:', chords_progression_MIDI_patch_number)
print('Base MIDI patch number:', base_MIDI_patch_number)
print('=' * 70)
#==================================================================
print('=' * 70)
print('Pitches Chords Progressions Generator')
print('=' * 70)
print('=' * 70)
print('Chunk-by-chunk generation')
print('=' * 70)
print('Generating...')
print('=' * 70)
matching_long_chords_chunks = []
ridx = random.randint(0, len(all_long_chords_tokens_chunks)-1)
matching_long_chords_chunks.append(ridx)
max_song_len = 0
tries = 0
while len(matching_long_chords_chunks) < minimum_song_length_in_chords_chunks:
matching_long_chords_chunks = []
ridx = random.randint(0, len(all_long_chords_tokens_chunks)-1)
matching_long_chords_chunks.append(ridx)
seen = [ridx]
gseen = [ridx]
for a in range(minimum_song_length_in_chords_chunks * 10):
if not matching_long_chords_chunks:
break
if len(matching_long_chords_chunks) > minimum_song_length_in_chords_chunks:
break
schunk = all_long_chords_tokens_chunks[matching_long_chords_chunks[-1]]
trg_long_chunk = np.array(schunk[-chunk_size:])
idxs = np.where((src_long_chunks == trg_long_chunk).all(axis=1))[0].tolist()
if len(idxs) > 1:
random.shuffle(idxs)
eidxs = [i for i in idxs if i not in seen]
if eidxs:
eidx = eidxs[0]
matching_long_chords_chunks.append(eidx)
seen.append(eidx)
gseen.append(eidx)
if 0 < chords_chunks_memory_ratio < 1:
seen = random.choices(gseen, k=math.ceil(len(gseen) * chords_chunks_memory_ratio))
elif chords_chunks_memory_ratio == 0:
seen = []
else:
gseen.pop()
matching_long_chords_chunks.pop()
else:
gseen.pop()
matching_long_chords_chunks.pop()
if len(matching_long_chords_chunks) > max_song_len:
print('Current song length:', len(matching_long_chords_chunks), 'chords chunks')
print('=' * 70)
final_song = matching_long_chords_chunks
max_song_len = max(max_song_len, len(matching_long_chords_chunks))
tries += 1
if tries % 500 == 0:
print('Number of passed tries:', tries)
print('=' * 70)
if len(matching_long_chords_chunks) > max_song_len:
print('Current song length:', len(matching_long_chords_chunks), 'chords chunks')
print('=' * 70)
final_song = matching_long_chords_chunks
f_song = []
for mat in final_song:
f_song.extend(all_long_good_chords_chunks[mat][:-chunk_size])
f_song.extend(all_long_good_chords_chunks[mat][-chunk_size:])
print('Generated final song after', tries, 'tries with', len(final_song), 'chords chunks and', len(f_song), 'chords')
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
output_score = []
time = 0
patches = [0] * 16
patches[0] = chords_progression_MIDI_patch_number
if base_MIDI_patch_number > -1:
patches[2] = base_MIDI_patch_number
if melody_MIDI_patch_number > -1:
patches[3] = melody_MIDI_patch_number
chords_labels = []
for i, s in enumerate(f_song):
time += chord_time_step
dur = chord_time_step
chord_str = str(i+1)
for t in sorted(set([t % 12 for t in s])):
chord_str += '-' + str(t)
chords_labels.append(['text_event', time, chord_str])
for p in s:
output_score.append(['note', time, dur, 0, p, max(40, p), chords_progression_MIDI_patch_number])
if base_MIDI_patch_number > -1:
output_score.append(['note', time, dur, 2, (s[-1] % 12)+24, 120-(s[-1] % 12), base_MIDI_patch_number])
if melody_MIDI_patch_number > -1:
output_score = TMIDIX.add_melody_to_enhanced_score_notes(output_score,
melody_patch=melody_MIDI_patch_number,
melody_notes_max_duration=max(merge_chords_notes, chord_time_step)
)
if merge_chords_notes > 0:
escore_matrix = TMIDIX.escore_notes_to_escore_matrix(output_score)
output_score = TMIDIX.escore_matrix_to_merged_escore_notes(escore_matrix, max_note_duration=merge_chords_notes)
midi_score = sorted(chords_labels + output_score, key=lambda x: x[1])
fn1 = "Pitches-Chords-Progression-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(midi_score,
output_signature = 'Pitches Chords Progression',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
#========================================================
output_midi_title = str(fn1)
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True)
print('Done!')
print('=' * 70)
#========================================================
print('Generated chords progression info and stats:')
print('=' * 70)
chords_progression_summary_string = '=' * 70
chords_progression_summary_string += '\n'
all_song_chords = []
for pc in f_song:
tones_chord = tuple(sorted(set([p % 12 for p in pc])))
all_song_chords.append([pc, tones_chord])
print('=' * 70)
print('Total number of chords:', len(all_song_chords))
chords_progression_summary_string += 'Total number of chords: ' + str(len(all_song_chords)) + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
print('=' * 70)
print('Most common pitches chord:', list(Counter(tuple([a[0] for a in all_song_chords])).most_common(1)[0][0]), '===', Counter(tuple([a[0] for a in all_song_chords])).most_common(1)[0][1], 'count')
chords_progression_summary_string += 'Most common pitches chord: ' + str(list(Counter(tuple([a[0] for a in all_song_chords])).most_common(1)[0][0])) + ' === ' + str(Counter(tuple([a[0] for a in all_song_chords])).most_common(1)[0][1]) + ' count' + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
print('=' * 70)
print('Most common tones chord:', list(Counter(tuple([a[1] for a in all_song_chords])).most_common(1)[0][0]), '===', Counter(tuple([a[1] for a in all_song_chords])).most_common(1)[0][1], 'count')
chords_progression_summary_string += 'Most common tones chord: ' + str(list(Counter(tuple([a[1] for a in all_song_chords])).most_common(1)[0][0])) + ' === ' + str(Counter(tuple([a[1] for a in all_song_chords])).most_common(1)[0][1]) + ' count' + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
print('=' * 70)
print('Sorted unique songs chords set:', len(sorted(set(tuple([a[1] for a in all_song_chords])))), 'count')
chords_progression_summary_string += 'Sorted unique songs chords set: ' + str(len(sorted(set(tuple([a[1] for a in all_song_chords]))))) + ' count' + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
#print('=' * 70)
for c in sorted(set(tuple([a[1] for a in all_song_chords]))):
#print(list(c))
chords_progression_summary_string += str(list(c)) + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
print('=' * 70)
print('Grouped songs chords set:', len(TMIDIX.grouped_set(tuple([a[1] for a in all_song_chords]))), 'count')
chords_progression_summary_string += 'Grouped songs chords set: ' + str(len(TMIDIX.grouped_set(tuple([a[1] for a in all_song_chords])))) + ' count' + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
print('=' * 70)
for c in TMIDIX.grouped_set(tuple([a[1] for a in all_song_chords])):
#print(list(c))
chords_progression_summary_string += str(list(c)) + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
#print('=' * 70)
#print('All songs chords')
chords_progression_summary_string += 'All songs chords' + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
#print('=' * 70)
for i, pc_tc in enumerate(all_song_chords):
#print('Song chord #', i)
chords_progression_summary_string += 'Song chord # ' + str(i) + '\n'
#print(list(pc_tc[0]), '===', list(pc_tc[1]))
chords_progression_summary_string += str(list(pc_tc[0])) + ' === ' + str(list(pc_tc[1])) + '\n'
#print('=' * 70)
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_audio, output_plot, output_midi, chords_progression_summary_string
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#===============================================================================
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
print('Loading Monster Harmonized Melodies MIDI Dataset...')
print('=' * 70)
all_chords_chunks = TMIDIX.Tegridy_Any_Pickle_File_Reader('Monster_Harmonized_Melodies_MIDI_Dataset')
print('=' * 70)
print('Total number of harmonized melodies:', len(all_chords_chunks))
print('=' * 70)
print('Loading melodies...')
long_mels_chunks_mult = []
long_chords_chunks_mult = []
for c in tqdm(all_chords_chunks):
long_mels_chunks_mult.append([p % 12 for p in c[0]])
long_chords_chunks_mult.append(c[1])
print('Done!')
print('=' * 70)
print('Total loaded melodies count:', len(long_mels_chunks_mult))
print('=' * 70)
#===============================================================================
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Monophonic MIDI Melody Harmonizer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Retrieval augmented harmonization of any MIDI melody</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Monophonic-MIDI-Melody-Harmonizer&style=flat)\n\n"
"This is a demo for Tegridy MIDI Dataset\n\n"
"Check out [Tegridy MIDI Dataset](https://github.com/asigalov61/Tegridy-MIDI-Dataset) on GitHub!\n\n"
)
gr.Markdown("## Select generation options")
minimum_song_length_in_chords_chunks = gr.Slider(4, 60, value=30, step=1, label="Minimum song length in chords chunks")
chords_chunks_memory_ratio = gr.Slider(0, 1, value=1, step=0.1, label="Chords chunks memory ratio")
chord_time_step = gr.Slider(100, 1000, value=500, step=50, label="Chord time step")
merge_chords_notes = gr.Slider(0, 4000, value=1000, step=100, label="Merged chords notes max time")
melody_MIDI_patch_number = gr.Slider(0, 127, value=40, step=1, label="Melody MIDI patch number")
chords_progression_MIDI_patch_number = gr.Slider(0, 127, value=0, step=1, label="Chords progression MIDI patch number")
base_MIDI_patch_number = gr.Slider(0, 127, value=35, step=1, label="Base MIDI patch number")
run_btn = gr.Button("harmonize", variant="primary")
gr.Markdown("## Generation results")
output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
output_cp_summary = gr.Textbox(label="Generated chords progression info and stats")
run_event = run_btn.click(Generate_Chords_Progression,
[minimum_song_length_in_chords_chunks,
chords_chunks_memory_ratio,
chord_time_step,
merge_chords_notes,
melody_MIDI_patch_number,
chords_progression_MIDI_patch_number,
base_MIDI_patch_number],
[output_audio, output_plot, output_midi, output_cp_summary]
)
app.queue().launch() |