File size: 13,566 Bytes
fd4c083 0d7d207 6fce636 0d7d207 356c43a 0d7d207 356c43a bf1555a 356c43a 0d7d207 6c4cb55 ea63137 0d7d207 6c4cb55 df2f0e4 6c4cb55 df2f0e4 6c4cb55 df2f0e4 6c4cb55 df2f0e4 6c4cb55 df2f0e4 6c4cb55 df2f0e4 6c4cb55 ea63137 6c4cb55 df2f0e4 6c4cb55 df2f0e4 6c4cb55 df2f0e4 6c4cb55 df2f0e4 6c4cb55 df2f0e4 6c4cb55 df2f0e4 ea63137 0d7d207 ea63137 6c4cb55 9a50d02 7da6719 0d7d207 6c4cb55 0d7d207 ea63137 6c4cb55 7da6719 9a50d02 7da6719 3f70f5c 7da6719 356c43a df2f0e4 0d7d207 6c4cb55 6fce636 0d7d207 6c4cb55 0d7d207 6c4cb55 7da6719 cf071b9 7da6719 0d7d207 6c4cb55 0d7d207 6c4cb55 446db64 7da6719 6c4cb55 7c1609a e8f5afe 6c4cb55 1904770 6c4cb55 b40ab34 d7ec460 f166bfe d7ec460 0d7d207 4d53e66 6c4cb55 0d7d207 7c1609a 0d7d207 7da6719 0d7d207 4d53e66 0d7d207 7fd51d1 0d7d207 7fd51d1 88d8b6d 0d7d207 6d01d0c 0d7d207 9a50d02 aba2db8 9a50d02 6d01d0c 0d7d207 ab6bc31 0d7d207 6d01d0c 0d7d207 ace20a5 9a50d02 ace20a5 0d7d207 6d01d0c 0d7d207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
# https://huggingface.co/spaces/asigalov61/Advanced-MIDI-Classifier
import os
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
from statistics import mode
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def ClassifyMIDI(input_midi):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
print('=' * 70)
print('Ultimate MIDI Classifier')
print('=' * 70)
print('Input MIDI file name:', fn)
print('=' * 70)
print('Loading MIDI file...')
midi_name = fn
raw_score = TMIDIX.midi2single_track_ms_score(open(input_midi.name, 'rb').read())
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
#===============================================================================
# Augmented enhanced score notes
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32)
escore_notes = [e for e in escore_notes if e[6] < 80 or e[6] == 128]
#=======================================================
# Augmentation
#=======================================================
# FINAL PROCESSING
melody_chords = []
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
pe = escore_notes[0]
pitches = []
notes_counter = 0
for e in escore_notes:
#=======================================================
# Timings...
delta_time = max(0, min(127, e[1]-pe[1]))
if delta_time != 0:
pitches = []
# Durations and channels
dur = max(1, min(127, e[2]))
# Patches
pat = max(0, min(128, e[6]))
# Pitches
if pat == 128:
ptc = max(1, min(127, e[4]))+128
else:
ptc = max(1, min(127, e[4]))
#=======================================================
# FINAL NOTE SEQ
# Writing final note synchronously
if ptc not in pitches:
melody_chords.extend([delta_time, dur+128, ptc+256])
pitches.append(ptc)
notes_counter += 1
pe = e
#==============================================================
print('Done!')
print('=' * 70)
print('Sampling score...')
chunk_size = 1020
score = melody_chords
input_data = []
for i in range(0, len(score)-chunk_size, chunk_size // classification_sampling_resolution):
schunk = score[i:i+chunk_size]
if len(schunk) == chunk_size:
td = [937]
td.extend(schunk)
td.extend([938])
input_data.append(td)
print('Done!')
print('=' * 70)
#==============================================================
classification_summary_string = '=' * 70
classification_summary_string += '\n'
print('Composition has', notes_counter, 'notes')
print('=' * 70)
print('Composition was split into' , len(input_data), 'samples', 'of 340 notes each with', 340 - chunk_size // classification_sampling_resolution // 3, 'notes overlap')
print('=' * 70)
print('Number of notes in all composition samples:', len(input_data) * 340)
print('=' * 70)
classification_summary_string += 'Composition has ' + str(notes_counter) + ' notes\n'
classification_summary_string += '=' * 70
classification_summary_string += '\n'
classification_summary_string += 'Composition was split into ' + 'samples of 340 notes each with ' + str(340 - chunk_size // classification_sampling_resolution // 3) + ' notes overlap\n'
classification_summary_string += 'Number of notes in all composition samples: ' + str(len(input_data) * 340) + '\n'
classification_summary_string += '=' * 70
classification_summary_string += '\n'
print('Loading model...')
SEQ_LEN = 1026
PAD_IDX = 940
DEVICE = 'cuda' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 24, heads = 32, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
model = torch.nn.DataParallel(model)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Ultimate_MIDI_Classifier_Trained_Model_29886_steps_0.556_loss_0.8339_acc.pth',
map_location=DEVICE))
print('=' * 70)
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
#==================================================================
print('=' * 70)
print('Ultimate MIDI Classifier')
print('=' * 70)
print('Classifying...')
torch.cuda.empty_cache()
model.eval()
artist_results = []
song_results = []
results = []
for input in input_data:
x = torch.tensor(input[:1022], dtype=torch.long, device='cuda')
with ctx:
out = model.module.generate(x,
2,
filter_logits_fn=top_k,
filter_kwargs={'k': 1},
temperature=0.9,
return_prime=False,
verbose=False)
result = tuple(out[0].tolist())
results.append(result)
all_results_labels = [classifier_labels[0][r-384] for r in results]
final_result = mode(results)
print('Done!')
print('=' * 70)
print('Most common classification label:', classifier_labels[0][final_result-384])
print('Most common classification label ratio:' , results.count(final_result) / len(results))
print('Most common classification label index', final_result)
print('=' * 70)
classification_summary_string += 'Most common classification label: ' + str(classifier_labels[0][final_result-384]) + '\n'
classification_summary_string += 'Most common classification label ratio: ' + str(results.count(final_result) / len(results)) + '\n'
classification_summary_string += 'Most common classification label index '+ str(final_result) + '\n'
classification_summary_string += '=' * 70
classification_summary_string += '\n'
print('All classification labels summary:')
print('=' * 70)
for i, a in enumerate(all_results_labels):
print('Notes', i*85, '-', (i*85)+340, '===', a)
classification_summary_string += 'Notes ' + str(i*85) + ' - ' + str((i*85)+340) + ' === ' + str(a) + '\n'
classification_summary_string += '=' * 70
classification_summary_string += '\n'
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
score_idx = processed_scores_labels.index(classifier_labels[0][final_result-384])
output_score = processed_scores[score_idx][1][:6000]
print('=' * 70)
print('Sample INTs', results[:15])
print('=' * 70)
fn1 = processed_scores[score_idx][0]
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score)
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
output_signature = 'Advanced MIDI Classifier',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches,
timings_multiplier=16
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = classification_summary_string
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True, timings_multiplier=16)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
#===============================================================================
# Helper functions
#===============================================================================
def str_strip_song(string):
if string is not None:
string = string.replace('-', ' ').replace('_', ' ').replace('=', ' ')
str1 = re.compile('[^a-zA-Z ]').sub('', string)
return re.sub(' +', ' ', str1).strip().title()
else:
return ''
def str_strip_artist(string):
if string is not None:
string = string.replace('-', ' ').replace('_', ' ').replace('=', ' ')
str1 = re.compile('[^0-9a-zA-Z ]').sub('', string)
return re.sub(' +', ' ', str1).strip().title()
else:
return ''
def song_artist_to_song_artist_tokens(file_name):
idx = classifier_labels.index(file_name)
tok1 = idx // 424
tok2 = idx % 424
return [tok1, tok2]
def song_artist_tokens_to_song_artist(file_name_tokens):
tok1 = file_name_tokens[0]
tok2 = file_name_tokens[1]
idx = (tok1 * 424) + tok2
return classifier_labels[idx]
#===============================================================================
print('=' * 70)
print('Loading Ultimate MIDI Classifier labels...')
print('=' * 70)
classifier_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Ultimate-MIDI-Classifier/Data/Ultimate_MIDI_Classifier_Song_Artist_Labels')
print('=' * 70)
genre_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Ultimate-MIDI-Classifier/Data/Ultimate_MIDI_Classifier_Music_Genre_Labels')
genre_labels_fnames = [f[0] for f in genre_labels]
print('=' * 70)
print('Done!')
print('=' * 70)
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Advanced MIDI Classifier</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Detailed MIDI classification with transformers</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Advanced-MIDI-Classifier&style=flat)\n\n"
"This is a demo for Annotated MIDI Dataset\n\n"
"Check out [Annotated MIDI Dataset](https://huggingface.co/datasets/asigalov61/Annotated-MIDI-Dataset) on Hugging Face!\n\n"
)
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
run_btn = gr.Button("classify", variant="primary")
gr.Markdown("## Classification results")
output_midi_title = gr.Textbox(label="Best classification match MIDI title")
output_midi_summary = gr.Textbox(label="MIDI classification summary")
output_audio = gr.Audio(label="Best classification match MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Best classification match MIDI score plot")
output_midi = gr.File(label="Best classification match MIDI file", file_types=[".mid"])
run_event = run_btn.click(ClassifyMIDI, [input_midi],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
app.queue().launch() |