File size: 83,301 Bytes
bf37476 0d7d207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 |
#===================================================================================================================
#
# X Trasformer Module
#
# Partial x-transformers code With useful modifications
#
# Version 1.0
#
# Original source code courtesy of lucidrains
# https://github.com/lucidrains/x-transformers
#
# Original source code retrieved on 10/10/2023
#
# Project Los Angeles
# Tegridy Code 2023
#===================================================================================================================
# Critical dependencies
#
# !pip install torch
# !pip install einops
#===================================================================================================================
from functools import partial
from typing import Optional, Tuple
import torch
from torch import nn, einsum, Tensor
import torch.nn.functional as F
# from torch.nn.attention import SDPBackend, sdpa_kernel
from collections import namedtuple
from functools import wraps
from packaging import version
from dataclasses import dataclass
from einops import rearrange, repeat
# constants
EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
@dataclass
class Intermediates:
qk_similarities: Optional[Tensor] = None
pre_softmax_attn: Optional[Tensor] = None
post_softmax_attn: Optional[Tensor] = None
cached_kv: Optional[Tuple[Tensor, Tensor]] = None
def to_tuple(self):
return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn)
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def compact(arr):
return [*filter(exists, arr)]
def once(fn):
called = False
@wraps(fn)
def inner(x):
nonlocal called
if called:
return
called = True
return fn(x)
return inner
print_once = once(print)
# functions for creating causal mask
# need a special one for onnx cpu (no support for .triu)
def create_causal_mask(i, j, device):
return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1)
def onnx_create_causal_mask(i, j, device):
r = torch.arange(i, device = device)
causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j')
causal_mask = F.pad(causal_mask, (j - i, 0), value = False)
return causal_mask
# main class
class Attend(nn.Module):
def __init__(
self,
*,
dropout = 0.,
causal = False,
heads = None,
talking_heads = False,
sparse_topk = None,
scale = None,
qk_norm = False,
flash = False,
add_zero_kv = False,
onnxable = False
):
super().__init__()
self.scale = scale
self.qk_norm = qk_norm
self.causal = causal
self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask
self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax
self.dropout = dropout
self.attn_dropout = nn.Dropout(dropout)
# talking heads
assert not (flash and talking_heads), 'talking heads not compatible with flash attention'
self.talking_heads = talking_heads
if talking_heads:
self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
# sparse topk
assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention'
self.sparse_topk = sparse_topk
# add a key / value token composed of zeros
# in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html
self.add_zero_kv = add_zero_kv
# flash attention
self.flash = flash
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
# determine efficient attention configs for cuda and cpu
self.cpu_config = EfficientAttentionConfig(True, True, True)
self.cuda_config = None
if not torch.cuda.is_available() or not flash:
return
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
major, minor = device_properties.major, device_properties.minor
if (major, minor) == (8, 0):
print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
self.cuda_config = EfficientAttentionConfig(True, False, False)
elif (major, minor) == (9, 0):
print_once('H100 GPU detected, using flash attention')
self.cuda_config = EfficientAttentionConfig(True, False, False)
else:
print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
self.cuda_config = EfficientAttentionConfig(False, True, True)
def flash_attn(
self,
q, k, v,
mask = None,
attn_bias = None
):
batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
# Recommended for multi-query single-key-value attention by Tri Dao
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
if k.ndim == 3:
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
if v.ndim == 3:
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
# handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention
if self.qk_norm:
default_scale = q.shape[-1] ** -0.5
q = q * (self.scale / default_scale)
# Check if mask exists and expand to compatible shape
# The mask is B L, so it would have to be expanded to B H N L
causal = self.causal
# in the case of kv caching with one token (q_len == 1), just turn off causal masking
# in speculative decoding, this may go up to 5-6, so right aligned causal mask will be needed there
if q_len == 1 and causal:
causal = False
# expand key padding mask
if exists(mask):
assert mask.ndim == 4
mask = mask.expand(batch, heads, q_len, k_len)
# handle kv cache - this should be bypassable in updated flash attention 2
if k_len > q_len and causal:
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
if not exists(mask):
mask = ~causal_mask
else:
mask = mask & ~causal_mask
causal = False
# manually handle causal mask, if another mask was given
row_is_entirely_masked = None
if exists(mask) and causal:
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
mask = mask & ~causal_mask
# protect against an entire row being masked out
row_is_entirely_masked = ~mask.any(dim = -1)
mask[..., 0] = mask[..., 0] | row_is_entirely_masked
causal = False
# handle alibi positional bias
# convert from bool to float
if exists(attn_bias):
attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1)
# if mask given, the mask would already contain the causal mask from above logic
# otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number
mask_value = -torch.finfo(q.dtype).max
if exists(mask):
attn_bias = attn_bias.masked_fill(~mask, mask_value // 2)
elif causal:
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2)
causal = False
# scaled_dot_product_attention handles attn_mask either as bool or additive bias
# make it an additive bias here
mask = attn_bias
# Check if there is a compatible device for flash attention
config = self.cuda_config if is_cuda else self.cpu_config
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
# Legacy code...
with torch.backends.cuda.sdp_kernel(enable_math=True, enable_mem_efficient=True):
# New SDP kernel code...
# with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
out = F.scaled_dot_product_attention(
q, k, v,
attn_mask = mask,
dropout_p = self.dropout if self.training else 0.,
is_causal = causal
)
# for a row that is entirely masked out, should zero out the output of that row token
if exists(row_is_entirely_masked):
out = out.masked_fill(row_is_entirely_masked[..., None], 0.)
return out, Intermediates()
def forward(
self,
q, k, v,
mask = None,
attn_bias = None,
prev_attn = None
):
"""
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
"""
n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device
scale = default(self.scale, q.shape[-1] ** -0.5)
causal = self.causal
# handle kv cached decoding
if n == 1 and causal:
causal = False
# handle grouped multi-query attention
if kv_heads == 1:
k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v))
elif kv_heads < heads:
k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v))
# handle zero kv, as means for allowing network to attend to nothing
if self.add_zero_kv:
k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v))
if exists(mask):
mask = F.pad(mask, (1, 0), value = True)
if exists(attn_bias):
attn_bias = F.pad(attn_bias, (1, 0), value = 0.)
if self.flash:
assert not exists(prev_attn), 'residual attention not compatible with flash attention'
return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias)
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
if exists(prev_attn):
dots = dots + prev_attn
qk_similarities = dots.clone()
if self.talking_heads:
dots = self.pre_softmax_talking_heads(dots)
if exists(attn_bias):
dots = dots + attn_bias
i, j, dtype = *dots.shape[-2:], dots.dtype
mask_value = -torch.finfo(dots.dtype).max
if exists(self.sparse_topk) and self.sparse_topk < j:
top_values, _ = dots.topk(self.sparse_topk, dim = -1)
sparse_topk_mask = dots < top_values[..., -1:]
mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask
if exists(mask):
dots = dots.masked_fill(~mask, mask_value)
if causal:
causal_mask = self.create_causal_mask(i, j, device = device)
dots = dots.masked_fill(causal_mask, mask_value)
pre_softmax_attn = dots.clone()
attn = self.attn_fn(dots, dim = -1)
attn = attn.type(dtype)
post_softmax_attn = attn.clone()
attn = self.attn_dropout(attn)
if self.talking_heads:
attn = self.post_softmax_talking_heads(attn)
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
intermediates = Intermediates(
qk_similarities = qk_similarities,
pre_softmax_attn = pre_softmax_attn,
post_softmax_attn = post_softmax_attn
)
return out, intermediates
#===================================================================================================================
from math import ceil, log
from typing import Optional, Union, Tuple, Callable
import torch
from torch import nn, Tensor
from torch.nn import Module
import torch.nn.functional as F
from einops import rearrange, pack, unpack
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def identity(t, *args, **kwargs):
return t
def cast_tuple(t, length = 1):
return t if isinstance(t, tuple) else (t,) * length
def eval_decorator(fn):
def inner(self, *args, **kwargs):
was_training = self.training
self.eval()
out = fn(self, *args, **kwargs)
self.train(was_training)
return out
return inner
# for variable lengthed prefixes
def align_right(t, lens, pad_id = 0):
batch, seq_len, device, dtype = *t.shape, t.device, t.dtype
assert lens.ndim == 1 and lens.shape[0] == batch
assert lens.amax() <= seq_len
pad_lens = seq_len - lens
max_pad_len = pad_lens.amax()
batch_arange = torch.arange(batch, device = device, dtype = torch.long)[..., None]
prompt_len_arange = torch.arange(seq_len, device = device, dtype = torch.long)
t = F.pad(t, (max_pad_len, 0), value = 0)
offset = max_pad_len - pad_lens
aligned = t[batch_arange, prompt_len_arange + offset[..., None]]
return aligned
# nucleus
def top_p(logits, thres = 0.9):
sorted_logits, sorted_indices = torch.sort(logits, descending = True)
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim = -1), dim = -1)
sorted_indices_to_remove = cum_probs > thres
sorted_indices_to_remove = F.pad(sorted_indices_to_remove, (1, -1), value = False)
sorted_logits[sorted_indices_to_remove] = float('-inf')
return sorted_logits.scatter(1, sorted_indices, sorted_logits)
# topk
def top_k(logits, frac_num_tokens = 0.1, k = None):
num_tokens = logits.shape[-1]
k = default(k, ceil(frac_num_tokens * num_tokens))
k = min(k, num_tokens)
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs
# top_a
def top_a(logits, min_p_pow = 2.0, min_p_ratio = 0.02):
probs = F.softmax(logits, dim = -1)
max_probs = torch.amax(probs, dim = -1, keepdim = True)
limit = torch.pow(max_probs, min_p_pow) * min_p_ratio
return torch.where(probs < limit, float('-inf'), logits)
# contrastive decoding function
def contrastive_decode_fn(
expert_logits,
amateur_logits,
alpha = 0.1,
beta = 0.5
):
"""
Appendix A Algorithm 2
https://arxiv.org/abs/2309.09117
"""
cutoff = log(alpha) + expert_logits.amax(dim = -1, keepdim = True)
diffs = (1 + beta) * expert_logits - beta * amateur_logits
contrastive_decode_logits = diffs.masked_fill(expert_logits < cutoff, -torch.finfo(expert_logits.dtype).max)
return contrastive_decode_logits
# autoregressive wrapper class
class AutoregressiveWrapper(Module):
def __init__(
self,
net,
ignore_index = -100,
pad_value = 0,
mask_prob = 0.,
add_attn_z_loss = False
):
super().__init__()
self.pad_value = pad_value
self.ignore_index = ignore_index
self.net = net
self.max_seq_len = net.max_seq_len
# paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432
assert mask_prob < 1.
self.mask_prob = mask_prob
# whether to add router z-loss
self.add_attn_z_loss = add_attn_z_loss
@torch.no_grad()
@eval_decorator
def generate(
self,
prompts,
seq_len,
eos_token = None,
temperature = 1.,
prompt_lens: Optional[Tensor] = None,
filter_logits_fn: Callable = top_k,
restrict_to_max_seq_len = True,
amateur_model: Optional[Union[Module, Tuple[Module]]] = None,
filter_kwargs: dict = dict(),
contrastive_decode_kwargs: Union[dict, Tuple[dict]] = dict(
beta = 0.5,
alpha = 0.1
),
cache_kv = True,
verbose=True,
return_prime=False,
**kwargs
):
max_seq_len, device = self.max_seq_len, prompts.device
prompts, ps = pack([prompts], '* n')
b, t = prompts.shape
# handle variable lengthed prompts (prefixes)
seq_start_pos = None
if exists(prompt_lens):
prompts = align_right(prompts, prompt_lens, pad_id = self.pad_value)
seq_start_pos = t - prompt_lens
# output from which sampled tokens appended to
out = prompts
if verbose:
print("Generating sequence of max length:", seq_len)
# kv caches
cache = None
# if doing contrastive decoding, turn off filter automatically
if exists(amateur_model):
amateur_model = cast_tuple(amateur_model)
contrastive_decode_kwargs = cast_tuple(contrastive_decode_kwargs)
assert len(amateur_model) == len(contrastive_decode_kwargs)
amateur_caches = [None] * len(amateur_model)
filter_logits_fn = identity
for i, module in enumerate(amateur_model):
if isinstance(module, AutoregressiveWrapper):
amateur_model[i] = module.net
module.eval()
# sampling up to seq_len
for sl in range(seq_len):
if restrict_to_max_seq_len:
x = out[:, -max_seq_len:]
if exists(cache):
for inter in cache.attn_intermediates:
inter.cached_kv = [t[..., -(max_seq_len - 1):, :] for t in inter.cached_kv]
logits, new_cache = self.net(
x,
return_intermediates = True,
cache = cache,
seq_start_pos = seq_start_pos,
**kwargs
)
if cache_kv and self.net.can_cache_kv:
cache = new_cache
logits = logits[:, -1]
# handle contrastive decoding, Li et al.
# https://arxiv.org/abs/2210.15097
if exists(amateur_model):
for i, (amateur, amateur_cache, amateur_contrastive_decode_kwargs) in enumerate(zip(amateur_model, amateur_caches, contrastive_decode_kwargs)):
amateur_logits, next_amateur_cache = amateur(
x,
return_intermediates = True,
cache = amateur_cache,
seq_start_pos = seq_start_pos,
**kwargs
)
amateur_logits = amateur_logits[:, -1]
assert amateur_logits.shape == logits.shape, 'logits dimension are not the same between amateur and expert model'
logits = contrastive_decode_fn(logits, amateur_logits, **amateur_contrastive_decode_kwargs)
if cache_kv and amateur.can_cache_kv:
amateur_caches[i] = next_amateur_cache
# filter by top_k, top_p (nucleus), top_a, or custom
filtered_logits = filter_logits_fn(logits, **filter_kwargs)
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
if verbose:
if sl % 32 == 0:
print(sl, '/', seq_len)
if exists(eos_token):
is_eos_tokens = (out == eos_token)
if is_eos_tokens.any(dim = -1).all():
# mask out everything after the eos tokens
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1
out = out.masked_fill(mask, self.pad_value)
if verbose:
print('Model called the end of sequence at:', sl, '/', seq_len)
break
if return_prime:
return out[:, :]
else:
return out[:, t:]
# out, = unpack(out, ps, '* n')
# return out
def compute_accuracy(self, logits, labels):
out = torch.argmax(logits, dim=-1)
out = out.flatten()
labels = labels.flatten()
mask = (labels != self.ignore_index) # can also be self.pad_value (your choice)
out = out[mask]
labels = labels[mask]
num_right = (out == labels)
num_right = torch.sum(num_right).type(torch.float32)
acc = num_right / len(labels)
return acc
def forward(self, x, **kwargs):
seq, ignore_index, add_attn_z_loss = x.shape[1], self.ignore_index, self.add_attn_z_loss
inp, target = x[:, :-1], x[:, 1:]
inp = torch.where(inp == ignore_index, self.pad_value, inp)
if self.mask_prob > 0.:
rand = torch.randn(inp.shape, device = x.device)
rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out
num_mask = min(int(seq * self.mask_prob), seq - 1)
indices = rand.topk(num_mask, dim = -1).indices
mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool()
kwargs.update(self_attn_kv_mask = mask)
logits, cache = self.net(
inp,
return_intermediates = True,
return_attn_z_loss = add_attn_z_loss,
**kwargs
)
acc = self.compute_accuracy(logits, target)
loss = F.cross_entropy(
rearrange(logits, 'b n c -> b c n'),
target,
ignore_index = ignore_index
)
if add_attn_z_loss:
loss = loss + cache.attn_z_loss
return loss, acc
#===============================================================================
import math
from random import random
import torch
from torch import nn, einsum, Tensor
import torch.nn.functional as F
from functools import partial, wraps
from inspect import isfunction
from collections import namedtuple
from dataclasses import dataclass
from typing import List, Callable, Optional
from einops import rearrange, repeat, reduce, pack, unpack
from einops.layers.torch import Rearrange
# constants
DEFAULT_DIM_HEAD = 64
@dataclass
class LayerIntermediates:
hiddens: Optional[List[Tensor]] = None
attn_intermediates: Optional[List[Intermediates]] = None
layer_hiddens: Optional[List[Tensor]] = None
attn_z_loss: Optional[Tensor] = None
mems: Optional[Tensor] = None
# helpers
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def cast_tuple(val, depth):
return val if isinstance(val, tuple) else (val,) * depth
def divisible_by(num, den):
return (num % den) == 0
def maybe(fn):
@wraps(fn)
def inner(x, *args, **kwargs):
if not exists(x):
return x
return fn(x, *args, **kwargs)
return inner
class always():
def __init__(self, val):
self.val = val
def __call__(self, *args, **kwargs):
return self.val
class not_equals():
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x != self.val
class equals():
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x == self.val
def Sequential(*modules):
return nn.Sequential(*filter(exists, modules))
# tensor helpers
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def l2norm(t, groups = 1):
t = rearrange(t, '... (g d) -> ... g d', g = groups)
t = F.normalize(t, p = 2, dim = -1)
return rearrange(t, '... g d -> ... (g d)')
def pad_at_dim(t, pad, dim = -1, value = 0.):
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
zeros = ((0, 0) * dims_from_right)
return F.pad(t, (*zeros, *pad), value = value)
def or_reduce(masks):
head, *body = masks
for rest in body:
head = head | rest
return head
# auxiliary loss helpers
def calc_z_loss(
pre_softmax_attns: List[Tensor],
mask = None,
weight = 1.
):
# the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906
# in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects
# also used in PaLM as one of the measures
lse = 0.
for attn in pre_softmax_attns:
lse = lse + attn.logsumexp(dim = -1)
loss = torch.square(lse)
loss = reduce(loss, 'b h n -> b n', 'sum')
if not exists(mask):
return loss.mean() * weight
loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5)
return loss * weight
# init helpers
def init_zero_(layer):
nn.init.constant_(layer.weight, 0.)
if exists(layer.bias):
nn.init.constant_(layer.bias, 0.)
# keyword argument helpers
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(),dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
# structured dropout, more effective than traditional attention dropouts
def dropout_seq(seq, mask, dropout):
b, n, *_, device = *seq.shape, seq.device
logits = torch.randn(b, n, device = device)
if exists(mask):
mask_value = max_neg_value(logits)
logits = logits.masked_fill(~mask, mask_value)
keep_prob = 1. - dropout
num_keep = max(1, int(keep_prob * n))
keep_indices = logits.topk(num_keep, dim = 1).indices
batch_indices = torch.arange(b, device = device)
batch_indices = rearrange(batch_indices, 'b -> b 1')
seq = seq[batch_indices, keep_indices]
if exists(mask):
seq_counts = mask.sum(dim = -1)
seq_keep_counts = torch.ceil(seq_counts * keep_prob).int()
keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1')
mask = mask[batch_indices, keep_indices] & keep_mask
return seq, mask
# activations
class ReluSquared(nn.Module):
def forward(self, x):
return F.relu(x) ** 2
# embedding
class TokenEmbedding(nn.Module):
def __init__(self, dim, num_tokens, l2norm_embed = False):
super().__init__()
self.l2norm_embed = l2norm_embed
self.emb = nn.Embedding(num_tokens, dim)
def forward(self, x):
token_emb = self.emb(x)
return l2norm(token_emb) if self.l2norm_embed else token_emb
# positional embeddings
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len, l2norm_embed = False):
super().__init__()
self.scale = dim ** -0.5 if not l2norm_embed else 1.
self.max_seq_len = max_seq_len
self.l2norm_embed = l2norm_embed
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x, pos = None, seq_start_pos = None):
seq_len, device = x.shape[1], x.device
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
if not exists(pos):
pos = torch.arange(seq_len, device = device)
if exists(seq_start_pos):
pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
pos_emb = self.emb(pos)
pos_emb = pos_emb * self.scale
return l2norm(pos_emb) if self.l2norm_embed else pos_emb
class ScaledSinusoidalEmbedding(nn.Module):
def __init__(self, dim, theta = 10000):
super().__init__()
assert divisible_by(dim, 2)
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
half_dim = dim // 2
freq_seq = torch.arange(half_dim).float() / half_dim
inv_freq = theta ** -freq_seq
self.register_buffer('inv_freq', inv_freq, persistent = False)
def forward(self, x, pos = None, seq_start_pos = None):
seq_len, device = x.shape[1], x.device
if not exists(pos):
pos = torch.arange(seq_len, device = device)
if exists(seq_start_pos):
pos = pos - seq_start_pos[..., None]
emb = einsum('i, j -> i j', pos, self.inv_freq)
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
return emb * self.scale
class RelativePositionBias(nn.Module):
def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8):
super().__init__()
self.scale = scale
self.causal = causal
self.num_buckets = num_buckets
self.max_distance = max_distance
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
@staticmethod
def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128):
ret = 0
n = -relative_position
if not causal:
num_buckets //= 2
ret += (n < 0).long() * num_buckets
n = torch.abs(n)
else:
n = torch.max(n, torch.zeros_like(n))
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
).long()
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret += torch.where(is_small, n, val_if_large)
return ret
@property
def device(self):
return next(self.parameters()).device
def forward(self, i, j):
device = self.device
q_pos = torch.arange(j - i, j, dtype = torch.long, device = device)
k_pos = torch.arange(j, dtype = torch.long, device = device)
rel_pos = k_pos[None, :] - q_pos[:, None]
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
values = self.relative_attention_bias(rp_bucket)
bias = rearrange(values, 'i j h -> h i j')
return bias * self.scale
class DynamicPositionBias(nn.Module):
def __init__(self, dim, *, heads, depth, log_distance = False, norm = False):
super().__init__()
assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1'
self.log_distance = log_distance
self.mlp = nn.ModuleList([])
self.mlp.append(Sequential(
nn.Linear(1, dim),
nn.LayerNorm(dim) if norm else None,
nn.SiLU()
))
for _ in range(depth - 1):
self.mlp.append(Sequential(
nn.Linear(dim, dim),
nn.LayerNorm(dim) if norm else None,
nn.SiLU()
))
self.mlp.append(nn.Linear(dim, heads))
@property
def device(self):
return next(self.parameters()).device
def forward(self, i, j):
assert i == j
n, device = j, self.device
# get the (n x n) matrix of distances
seq_arange = torch.arange(n, device = device)
context_arange = torch.arange(n, device = device)
indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j')
indices += (n - 1)
# input to continuous positions MLP
pos = torch.arange(-n + 1, n, device = device).float()
pos = rearrange(pos, '... -> ... 1')
if self.log_distance:
pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1)
for layer in self.mlp:
pos = layer(pos)
# get position biases
bias = pos[indices]
bias = rearrange(bias, 'i j h -> h i j')
return bias
class AlibiPositionalBias(nn.Module):
def __init__(self, heads, total_heads, **kwargs):
super().__init__()
self.heads = heads
self.total_heads = total_heads
slopes = Tensor(self._get_slopes(heads))
slopes = rearrange(slopes, 'h -> h 1 1')
self.register_buffer('slopes', slopes, persistent = False)
self.register_buffer('bias', None, persistent = False)
def get_bias(self, i, j, device):
i_arange = torch.arange(j - i, j, device = device)
j_arange = torch.arange(j, device = device)
bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1'))
return bias
@staticmethod
def _get_slopes(heads):
def get_slopes_power_of_2(n):
start = (2**(-2**-(math.log2(n)-3)))
ratio = start
return [start*ratio**i for i in range(n)]
if math.log2(heads).is_integer():
return get_slopes_power_of_2(heads)
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2]
@property
def device(self):
return next(self.buffers()).device
def forward(self, i, j):
h, device = self.total_heads, self.device
if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
return self.bias[..., -i:, -j:]
bias = self.get_bias(i, j, device)
bias = bias * self.slopes
num_heads_unalibied = h - bias.shape[0]
bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0)
self.register_buffer('bias', bias, persistent = False)
return self.bias
class RotaryEmbedding(nn.Module):
def __init__(
self,
dim,
use_xpos = False,
scale_base = 512,
interpolation_factor = 1.,
base = 10000,
base_rescale_factor = 1.
):
super().__init__()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
base *= base_rescale_factor ** (dim / (dim - 2))
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
assert interpolation_factor >= 1.
self.interpolation_factor = interpolation_factor
if not use_xpos:
self.register_buffer('scale', None)
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = scale_base
self.register_buffer('scale', scale)
def forward(self, seq_len):
device = self.inv_freq.device
t = torch.arange(seq_len, device = device).type_as(self.inv_freq)
t = t / self.interpolation_factor
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim = -1)
if not exists(self.scale):
return freqs, 1.
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = torch.cat((scale, scale), dim = -1)
return freqs, scale
def rotate_half(x):
x = rearrange(x, '... (j d) -> ... j d', j = 2)
x1, x2 = x.unbind(dim = -2)
return torch.cat((-x2, x1), dim = -1)
def apply_rotary_pos_emb(t, freqs, scale = 1):
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
freqs = freqs[-seq_len:, :]
if t.ndim == 4 and freqs.ndim == 3:
freqs = rearrange(freqs, 'b n d -> b 1 n d')
# partial rotary embeddings, Wang et al. GPT-J
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
return torch.cat((t, t_unrotated), dim = -1)
# norms
class Scale(nn.Module):
def __init__(self, value, fn):
super().__init__()
self.value = value
self.fn = fn
def forward(self, x, **kwargs):
out = self.fn(x, **kwargs)
scale_fn = lambda t: t * self.value
if not isinstance(out, tuple):
return scale_fn(out)
return (scale_fn(out[0]), *out[1:])
class ScaleNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5))
def forward(self, x):
norm = torch.norm(x, dim = -1, keepdim = True)
return x / norm.clamp(min = self.eps) * self.g
class RMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
self.g = nn.Parameter(torch.ones(dim))
def forward(self, x):
return F.normalize(x, dim = -1) * self.scale * self.g
class SimpleRMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
def forward(self, x):
return F.normalize(x, dim = -1) * self.scale
# residual and residual gates
class Residual(nn.Module):
def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.):
super().__init__()
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
self.scale_residual_constant = scale_residual_constant
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
if self.scale_residual_constant != 1:
residual = residual * self.scale_residual_constant
return x + residual
class GRUGating(nn.Module):
def __init__(self, dim, scale_residual = False, **kwargs):
super().__init__()
self.gru = nn.GRUCell(dim, dim)
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
gated_output = self.gru(
rearrange(x, 'b n d -> (b n) d'),
rearrange(residual, 'b n d -> (b n) d')
)
return gated_output.reshape_as(x)
# token shifting
def shift(t, amount, mask = None):
if amount == 0:
return t
else:
amount = min(amount, t.shape[1])
if exists(mask):
t = t.masked_fill(~mask[..., None], 0.)
return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.)
class ShiftTokens(nn.Module):
def __init__(self, shifts, fn):
super().__init__()
self.fn = fn
self.shifts = tuple(shifts)
def forward(self, x, **kwargs):
mask = kwargs.get('mask', None)
shifts = self.shifts
segments = len(shifts)
feats_per_shift = x.shape[-1] // segments
splitted = x.split(feats_per_shift, dim = -1)
segments_to_shift, rest = splitted[:segments], splitted[segments:]
segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts)))
x = torch.cat((*segments_to_shift, *rest), dim = -1)
return self.fn(x, **kwargs)
# feedforward
class GLU(nn.Module):
def __init__(
self,
dim_in,
dim_out,
activation: Callable,
mult_bias = False
):
super().__init__()
self.act = activation
self.proj = nn.Linear(dim_in, dim_out * 2)
self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1.
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim = -1)
return x * self.act(gate) * self.mult_bias
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out = None,
mult = 4,
glu = False,
glu_mult_bias = False,
swish = False,
relu_squared = False,
post_act_ln = False,
dropout = 0.,
no_bias = False,
zero_init_output = False
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
if relu_squared:
activation = ReluSquared()
elif swish:
activation = nn.SiLU()
else:
activation = nn.GELU()
if glu:
project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias)
else:
project_in = nn.Sequential(
nn.Linear(dim, inner_dim, bias = not no_bias),
activation
)
self.ff = Sequential(
project_in,
nn.LayerNorm(inner_dim) if post_act_ln else None,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out, bias = not no_bias)
)
# init last linear layer to 0
if zero_init_output:
init_zero_(self.ff[-1])
def forward(self, x):
return self.ff(x)
# attention. it is all we need
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head = DEFAULT_DIM_HEAD,
heads = 8,
causal = False,
flash = False,
talking_heads = False,
head_scale = False,
sparse_topk = None,
num_mem_kv = 0,
dropout = 0.,
on_attn = False,
gate_value_heads = False,
gate_values = False,
zero_init_output = False,
max_attend_past = None,
qk_norm = False,
qk_norm_groups = 1,
qk_norm_scale = 10,
qk_norm_dim_scale = False,
one_kv_head = False,
kv_heads = None,
shared_kv = False,
value_dim_head = None,
tensor_product = False, # https://arxiv.org/abs/2208.06061
add_zero_kv = False, # same as add_zero_attn in pytorch
rotary_embed_values = False,
onnxable = False
):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
self.causal = causal
self.max_attend_past = max_attend_past
assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both'
value_dim_head = default(value_dim_head, dim_head)
kv_heads = default(kv_heads, heads)
kv_heads = 1 if one_kv_head else kv_heads
assert divisible_by(heads, kv_heads)
self.kv_heads = kv_heads
q_dim = dim_head * heads
k_dim = dim_head * kv_heads
v_dim = value_dim_head * kv_heads
out_dim = value_dim_head * heads
self.to_q = nn.Linear(dim, q_dim, bias = False)
self.to_k = nn.Linear(dim, k_dim, bias = False)
# shared key / values, for further memory savings during inference
assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values'
self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None
# relations projection from tp-attention
self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None
# add GLU gating for aggregated values, from alphafold2
self.to_v_gate = None
if gate_values:
self.to_v_gate = nn.Linear(dim, out_dim)
nn.init.constant_(self.to_v_gate.weight, 0)
nn.init.constant_(self.to_v_gate.bias, 10)
# add per head gating of the output values, from 'Attend to nothing' paper
self.to_v_head_gate = None
if gate_value_heads:
self.to_v_head_gate = nn.Linear(dim, heads)
nn.init.constant_(self.to_v_head_gate.weight, 0)
nn.init.constant_(self.to_v_head_gate.bias, 10)
# cosine sim attention
self.qk_norm = qk_norm
self.qk_norm_groups = qk_norm_groups
self.qk_norm_scale = qk_norm_scale
# whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442
self.qk_norm_dim_scale = qk_norm_dim_scale
self.qk_norm_q_scale = self.qk_norm_k_scale = 1
if qk_norm and qk_norm_dim_scale:
self.qk_norm_q_scale = nn.Parameter(torch.ones(heads, 1, dim_head))
self.qk_norm_k_scale = nn.Parameter(torch.ones(heads, 1, dim_head))
assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups'
assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)'
# attend class - includes core attention algorithm + talking heads
self.attend = Attend(
heads = heads,
causal = causal,
talking_heads = talking_heads,
dropout = dropout,
sparse_topk = sparse_topk,
qk_norm = qk_norm,
scale = qk_norm_scale if qk_norm else self.scale,
add_zero_kv = add_zero_kv,
flash = flash,
onnxable = onnxable
)
# head scaling
self.head_scale = head_scale
if head_scale:
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))
# explicit topk sparse attention
self.sparse_topk = sparse_topk
# add memory key / values
self.num_mem_kv = num_mem_kv
if num_mem_kv > 0:
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
# attention on attention
self.attn_on_attn = on_attn
self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False)
# whether to rotate positions into values, for absolute positions in addition to relative
self.rotary_embed_values = rotary_embed_values
# init output projection 0
if zero_init_output:
init_zero_(self.to_out)
def forward(
self,
x,
context = None,
mask = None,
context_mask = None,
attn_mask = None,
rel_pos = None,
rotary_pos_emb = None,
prev_attn = None,
mem = None,
return_intermediates = False,
cache: Optional[Intermediates] = None,
):
b, n, _, h, kv_h, head_scale, device, has_context = *x.shape, self.heads, self.kv_heads, self.head_scale, x.device, exists(context)
kv_input = default(context, x)
q_input = x
k_input = kv_input
v_input = kv_input
r_input = x
if exists(mem):
k_input, mem_packed_shape = pack([mem, k_input], 'b * d')
v_input, _ = pack([mem, v_input], 'b * d')
q = self.to_q(q_input)
k = self.to_k(k_input)
v = self.to_v(v_input) if exists(self.to_v) else k
r = self.to_r(r_input) if exists(self.to_r) else None
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r))
if exists(cache) and not has_context:
ck, cv = cache.cached_kv
if exists(mem):
mk, k = unpack(k, mem_packed_shape, 'b h * d')
mv, v = unpack(v, mem_packed_shape, 'b h * d')
k = torch.cat((ck, k), dim = -2)
v = torch.cat((cv, v), dim = -2)
if exists(mem):
k = torch.cat((mk, k), dim = -2)
v = torch.cat((mv, v), dim = -2)
if return_intermediates:
mem_len = mem.shape[-2] if exists(mem) else 0
cached_kv = (k[..., mem_len:, :], v[..., mem_len:, :])
if self.qk_norm:
qk_l2norm = partial(l2norm, groups = self.qk_norm_groups)
q, k = map(qk_l2norm, (q, k))
scale = self.qk_norm_scale
q = q * self.qk_norm_q_scale
k = k * self.qk_norm_k_scale
if exists(rotary_pos_emb) and not has_context:
freqs, xpos_scale = rotary_pos_emb
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.)
q = apply_rotary_pos_emb(q, freqs, q_xpos_scale)
k = apply_rotary_pos_emb(k, freqs, k_xpos_scale)
if self.rotary_embed_values:
v = apply_rotary_pos_emb(v, freqs, k_xpos_scale)
input_mask = context_mask
if not exists(input_mask) and not has_context:
input_mask = mask
if self.num_mem_kv > 0:
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v))
if self.qk_norm:
mem_k = l2norm(mem_k)
mem_k = mem_k * self.qk_norm_k_scale
k = torch.cat((mem_k, k), dim = -2)
v = torch.cat((mem_v, v), dim = -2)
if exists(input_mask):
input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True)
i, j = map(lambda t: t.shape[-2], (q, k))
# determine masking
mask_value = max_neg_value(q)
masks = []
final_attn_mask = None
if exists(input_mask):
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
masks.append(~input_mask)
if exists(attn_mask):
assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
if attn_mask.ndim == 2:
attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j')
elif attn_mask.ndim == 3:
attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j')
masks.append(~attn_mask)
if exists(self.max_attend_past):
range_q = torch.arange(j - i, j, device = device)
range_k = torch.arange(j, device = device)
dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j')
max_attend_past_mask = dist > self.max_attend_past
masks.append(max_attend_past_mask)
if len(masks) > 0:
final_attn_mask = ~or_reduce(masks)
# prepare relative positional bias, if needed
attn_bias = None
if exists(rel_pos):
attn_bias = rel_pos(i, j)
# attention is all we need
out, intermediates = self.attend(
q, k, v,
mask = final_attn_mask,
attn_bias = attn_bias,
prev_attn = prev_attn
)
# https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients
if exists(r):
out = out * r + out
# normformer scaling of heads
if head_scale:
out = out * self.head_scale_params
# per head gating, from https://arxiv.org/abs/2306.12929
if exists(self.to_v_head_gate):
head_gate = self.to_v_head_gate(x)
out = out * rearrange(head_gate, 'b n h -> b h n 1').sigmoid()
# merge heads
out = rearrange(out, 'b h n d -> b n (h d)')
# alphafold2 styled gating of the values
if exists(self.to_v_gate):
gates = self.to_v_gate(x)
out = out * gates.sigmoid()
# combine the heads
out = self.to_out(out)
if exists(mask):
mask = rearrange(mask, 'b n -> b n 1')
out = out.masked_fill(~mask, 0.)
if not return_intermediates:
return out
intermediates.cached_kv = cached_kv
return out, intermediates
class AttentionLayers(nn.Module):
def __init__(
self,
dim,
depth,
heads = 8,
causal = False,
cross_attend = False,
only_cross = False,
use_scalenorm = False,
use_rmsnorm = False,
use_simple_rmsnorm = False,
alibi_pos_bias = False,
alibi_num_heads = None,
rel_pos_bias = False,
rel_pos_num_buckets = 32,
rel_pos_max_distance = 128,
dynamic_pos_bias = False,
dynamic_pos_bias_log_distance = False,
dynamic_pos_bias_mlp_depth = 2,
dynamic_pos_bias_norm = False,
rotary_pos_emb = False,
rotary_emb_dim = None,
rotary_xpos = False,
rotary_interpolation_factor = 1.,
rotary_xpos_scale_base = 512,
rotary_base_rescale_factor = 1.,
custom_layers = None,
sandwich_coef = None,
par_ratio = None,
weight_tie_layers = False, # Albert - https://arxiv.org/abs/1909.11942
layers_execute_order = None, # generalizes weight tying, can do arbitrary layer execution orders
residual_attn = False,
cross_residual_attn = False,
macaron = False,
pre_norm = True,
pre_norm_has_final_norm = True,
gate_residual = False,
scale_residual = False,
scale_residual_constant = 1.,
shift_tokens = 0,
sandwich_norm = False,
resi_dual = False,
resi_dual_scale = 1.,
zero_init_branch_output = False,
layer_dropout = 0.,
cross_attn_tokens_dropout = 0.,
**kwargs
):
super().__init__()
rotary_pos_emb = rotary_pos_emb or rotary_xpos
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs)
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
self.dim = dim
self.depth = depth
self.causal = causal
self.layers = nn.ModuleList([])
self.has_pos_emb = rel_pos_bias or rotary_pos_emb
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32)
assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention'
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None
assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both'
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
# relative positional bias
flash_attn = attn_kwargs.get('flash', False)
assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias'
self.rel_pos = None
if rel_pos_bias:
assert not flash_attn, 'flash attention not compatible with t5 relative positional bias'
self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance)
elif dynamic_pos_bias:
assert not flash_attn, 'flash attention not compatible with dynamic positional bias'
self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm)
elif alibi_pos_bias:
alibi_num_heads = default(alibi_num_heads, heads)
assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads)
assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both'
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
if resi_dual:
pre_norm = False
self.pre_norm = pre_norm
self.sandwich_norm = sandwich_norm
self.resi_dual = resi_dual
assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.'
self.resi_dual_scale = resi_dual_scale
self.residual_attn = residual_attn
self.cross_residual_attn = cross_residual_attn
assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention'
self.cross_attend = cross_attend
assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm'
if use_scalenorm:
norm_class = ScaleNorm
elif use_rmsnorm:
norm_class = RMSNorm
elif use_simple_rmsnorm:
norm_class = SimpleRMSNorm
else:
norm_class = nn.LayerNorm
norm_fn = partial(norm_class, dim)
if cross_attend and not only_cross:
default_block = ('a', 'c', 'f')
elif cross_attend and only_cross:
default_block = ('c', 'f')
else:
default_block = ('a', 'f')
if macaron:
default_block = ('f',) + default_block
# zero init
if zero_init_branch_output:
attn_kwargs = {**attn_kwargs, 'zero_init_output': True}
ff_kwargs = {**ff_kwargs, 'zero_init_output': True}
# setup weight tying, which is a special case of `layer_execute_order`
assert not (weight_tie_layers and any([*map(exists, (custom_layers, par_ratio, sandwich_coef))]))
if weight_tie_layers:
assert not exists(layers_execute_order)
layers_execute_order = tuple(range(len(default_block))) * depth
depth = 1
# calculate layer block order
if exists(custom_layers):
layer_types = custom_layers
elif exists(par_ratio):
par_depth = depth * len(default_block)
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
default_block = tuple(filter(not_equals('f'), default_block))
par_attn = par_depth // par_ratio
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
par_width = (depth_cut + depth_cut // par_attn) // par_attn
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
par_block = default_block + ('f',) * (par_width - len(default_block))
par_head = par_block * par_attn
layer_types = par_head + ('f',) * (par_depth - len(par_head))
elif exists(sandwich_coef):
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
else:
layer_types = default_block * depth
self.layer_types = layer_types
self.layers_execute_order = default(layers_execute_order, tuple(range(len(layer_types))))
assert all([i < len(self.layer_types) for i in self.layers_execute_order])
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
# stochastic depth
self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types))
# structured dropout for cross attending
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout
# calculate token shifting
shift_tokens = cast_tuple(shift_tokens, len(layer_types))
# whether it has post norm
self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity()
# iterate and construct layers
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):
is_last_layer = ind == (len(self.layer_types) - 1)
if layer_type == 'a':
layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs)
elif layer_type == 'c':
layer = Attention(dim, heads = heads, **attn_kwargs)
elif layer_type == 'f':
layer = FeedForward(dim, **ff_kwargs)
layer = layer if not macaron else Scale(0.5, layer)
else:
raise Exception(f'invalid layer type {layer_type}')
if layer_shift_tokens > 0:
shift_range_upper = layer_shift_tokens + 1
shift_range_lower = -layer_shift_tokens if not causal else 0
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)
residual_fn = GRUGating if gate_residual else Residual
residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant)
pre_branch_norm = norm_fn() if pre_norm else None
post_branch_norm = norm_fn() if sandwich_norm else None
post_main_norm = norm_fn() if not pre_norm else None
norms = nn.ModuleList([
pre_branch_norm,
post_branch_norm,
post_main_norm
])
self.layers.append(nn.ModuleList([
norms,
layer,
residual
]))
def forward(
self,
x,
context = None,
mask = None,
context_mask = None,
attn_mask = None,
self_attn_kv_mask = None,
mems = None,
seq_start_pos: Optional[Tensor] = None,
cache: Optional[LayerIntermediates] = None,
cache_age = 1,
return_hiddens = False
):
assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True'
# initialize accums
hiddens = []
layer_hiddens = []
intermediates = []
prev_attn = None
prev_cross_attn = None
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
# handle left padded sequences
if exists(seq_start_pos):
seq_arange = torch.arange(x.shape[-2], device = x.device, dtype = torch.long)
left_pad_mask = seq_arange >= seq_start_pos[..., None]
if exists(self_attn_kv_mask):
self_attn_kv_mask = self_attn_kv_mask & left_pad_mask
else:
self_attn_kv_mask = left_pad_mask
# rotary positions
rotary_pos_emb = None
if exists(self.rotary_pos_emb):
max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems)))
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length)
# assume cached key / values
attn_cache = []
if exists(cache):
assert not self.training and self.causal and not any([*map(exists, (mask, attn_mask))])
if cache_age > 0:
x = x[:, -cache_age:] # for spec decoding, may be greater than 1
attn_cache = cache.attn_intermediates
iter_attn_cache = iter(attn_cache)
# outer residual - for resiDual paper
outer_residual = x * self.resi_dual_scale
# get layers to be executed
layer_variables = (
self.layer_types,
self.layers,
self.layer_dropouts
)
layer_variables = tuple(tuple(layer_variable[i] for i in self.layers_execute_order) for layer_variable in layer_variables)
# go through the attention and feedforward layers
for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(*layer_variables)):
is_last = ind == (len(self.layers) - 1)
if self.training and layer_dropout > 0. and random() < layer_dropout:
continue
if layer_type == 'a':
if return_hiddens:
hiddens.append(x)
layer_mem = mems.pop(0) if mems else None
if layer_type == 'c':
if self.training and self.cross_attn_tokens_dropout > 0.:
context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout)
inner_residual = x
if return_hiddens:
layer_hiddens.append(x)
pre_norm, post_branch_norm, post_main_norm = norm
if exists(pre_norm):
x = pre_norm(x)
if layer_type == 'a':
out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, return_intermediates = True)
elif layer_type == 'c':
out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), return_intermediates = True)
elif layer_type == 'f':
out = block(x)
if self.resi_dual:
outer_residual = outer_residual + out * self.resi_dual_scale
if exists(post_branch_norm):
out = post_branch_norm(out)
x = residual_fn(out, inner_residual)
if layer_type in ('a', 'c') and return_hiddens:
intermediates.append(inter)
if layer_type == 'a' and self.residual_attn:
prev_attn = inter.pre_softmax_attn
elif layer_type == 'c' and self.cross_residual_attn:
prev_cross_attn = inter.pre_softmax_attn
if exists(post_main_norm):
x = post_main_norm(x)
if return_hiddens:
layer_hiddens.append(x)
if self.resi_dual:
x = x + self.final_norm(outer_residual)
else:
x = self.final_norm(x)
if not return_hiddens:
return x
intermediates = LayerIntermediates(
hiddens = hiddens,
attn_intermediates = intermediates,
layer_hiddens = layer_hiddens
)
return x, intermediates
class Encoder(AttentionLayers):
def __init__(self, **kwargs):
assert 'causal' not in kwargs, 'cannot set causality on encoder'
super().__init__(causal = False, **kwargs)
class Decoder(AttentionLayers):
def __init__(self, **kwargs):
assert 'causal' not in kwargs, 'cannot set causality on decoder'
super().__init__(causal = True, **kwargs)
class CrossAttender(AttentionLayers):
def __init__(self, **kwargs):
super().__init__(cross_attend = True, only_cross = True, **kwargs)
class ViTransformerWrapper(nn.Module):
def __init__(
self,
*,
image_size,
patch_size,
attn_layers,
channels = 3,
num_classes = None,
post_emb_norm = False,
num_register_tokens = 0,
emb_dropout = 0.
):
super().__init__()
assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder'
assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size'
dim = attn_layers.dim
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
has_register_tokens = num_register_tokens > 0
self.has_register_tokens = has_register_tokens
if has_register_tokens:
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim))
self.patch_to_embedding = nn.Sequential(
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
self.dropout = nn.Dropout(emb_dropout)
self.attn_layers = attn_layers
self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity()
def forward(
self,
img,
return_embeddings = False
):
b, p = img.shape[0], self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x)
n = x.shape[1]
x = x + self.pos_embedding[:, :n]
x = self.post_emb_norm(x)
x = self.dropout(x)
if self.has_register_tokens:
r = repeat(self.register_tokens, 'n d -> b n d', b = b)
x, ps = pack((x, r), 'b * d')
x = self.attn_layers(x)
if self.has_register_tokens:
x, _ = unpack(x, ps, 'b * d')
if not exists(self.mlp_head) or return_embeddings:
return x
x = x.mean(dim = -2)
return self.mlp_head(x)
class TransformerWrapper(nn.Module):
def __init__(
self,
*,
num_tokens,
max_seq_len,
attn_layers,
emb_dim = None,
max_mem_len = 0,
shift_mem_down = 0,
emb_dropout = 0.,
post_emb_norm = False,
num_memory_tokens = None,
memory_tokens_interspersed_every = None,
tie_embedding = False,
logits_dim = None,
use_abs_pos_emb = True,
scaled_sinu_pos_emb = False,
l2norm_embed = False,
emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1
attn_z_loss_weight = 1e-4,
):
super().__init__()
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
dim = attn_layers.dim
emb_dim = default(emb_dim, dim)
self.emb_dim = emb_dim
self.num_tokens = num_tokens
self.max_seq_len = max_seq_len
self.max_mem_len = max_mem_len
self.shift_mem_down = shift_mem_down
self.l2norm_embed = l2norm_embed
self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed)
if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
self.pos_emb = always(0)
elif scaled_sinu_pos_emb:
self.pos_emb = ScaledSinusoidalEmbedding(emb_dim)
else:
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed)
self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290
self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity()
self.emb_dropout = nn.Dropout(emb_dropout)
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
self.attn_layers = attn_layers
self.init_()
logits_dim = default(logits_dim, num_tokens)
self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t()
# memory tokens (like [cls]) from Memory Transformers paper
num_memory_tokens = default(num_memory_tokens, 0)
self.num_memory_tokens = num_memory_tokens
if num_memory_tokens > 0:
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
self.memory_tokens_interspersed_every = memory_tokens_interspersed_every
# whether can do cached kv decoding
self.can_cache_kv = self.num_memory_tokens == 0
def init_(self):
if self.l2norm_embed:
nn.init.normal_(self.token_emb.emb.weight, std = 1e-5)
if not isinstance(self.pos_emb, always):
nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5)
return
nn.init.kaiming_normal_(self.token_emb.emb.weight)
def forward(
self,
x,
return_embeddings = False,
return_logits_and_embeddings = False,
return_intermediates = False,
mask = None,
return_mems = False,
return_attn = False,
mems = None,
pos = None,
prepend_embeds = None,
sum_embeds = None,
return_attn_z_loss = False,
attn_z_loss_weight = 1e-4,
seq_start_pos = None,
cache: Optional[LayerIntermediates] = None,
**kwargs
):
b, n, device, num_mems, has_memory_tokens, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient
return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss
# absolute positional embedding
external_pos_emb = exists(pos) and pos.dtype != torch.long
pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos
x = self.token_emb(x) + pos_emb
# for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training
if exists(sum_embeds):
x = x + sum_embeds
# post embedding norm, purportedly leads to greater stabilization
x = self.post_emb_norm(x)
# whether to append embeds, as in PaLI, for image embeddings
if exists(prepend_embeds):
prepend_seq, prepend_dim = prepend_embeds.shape[1:]
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions'
x = torch.cat((prepend_embeds, x), dim = -2)
# whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model
if emb_frac_gradient < 1:
assert emb_frac_gradient > 0
x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient)
# embedding dropout
x = self.emb_dropout(x)
x = self.project_emb(x)
if has_memory_tokens:
mem_every = self.memory_tokens_interspersed_every
if exists(mem_every):
assert mem_every > 0
assert isinstance(self.attn_layers, Decoder), 'only for decoder'
next_seq_len = math.ceil(n / mem_every) * mem_every
x = pad_at_dim(x, (0, next_seq_len - n), dim = -2, value = 0.)
x = rearrange(x, 'b (n m) d -> (b n) m d', m = mem_every)
mem = repeat(self.memory_tokens, 'n d -> b n d', b = x.shape[0])
x, mem_packed_shape = pack((mem, x), 'b * d')
# auto-handle masking after appending memory tokens
if not exists(mem_every) and exists(mask):
mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True)
if exists(mem_every):
x = rearrange(x, '(b n) m d -> b (n m) d', b = b)
if self.shift_mem_down and exists(mems):
mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:]
mems = [*mems_r, *mems_l]
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, cache = cache, return_hiddens = True, seq_start_pos = seq_start_pos, **kwargs)
if has_memory_tokens:
if exists(mem_every):
x = rearrange(x, 'b (n m) d -> (b n) m d', m = (mem_every + num_mems))
mem, x = unpack(x, mem_packed_shape, 'b * d')
if exists(mem_every):
x = rearrange(x, '(b n) m d -> b (n m) d', b = b)
x = x[:, :n]
if return_logits_and_embeddings:
out = (self.to_logits(x), x)
elif return_embeddings:
out = x
else:
out = self.to_logits(x)
if return_attn_z_loss:
pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates))
intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight)
return_intermediates = True
if return_mems:
hiddens = intermediates.hiddens
new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
if not return_intermediates:
return out, new_mems
intermediates.mems = new_mems
if return_intermediates:
return out, intermediates
if return_attn:
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
return out, attn_maps
return out
class ContinuousTransformerWrapper(nn.Module):
def __init__(
self,
*,
max_seq_len,
attn_layers,
dim_in = None,
dim_out = None,
emb_dim = None,
max_mem_len = 0,
post_emb_norm = False,
emb_dropout = 0.,
use_abs_pos_emb = True,
scaled_sinu_pos_emb = False
):
super().__init__()
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
dim = attn_layers.dim
self.max_seq_len = max_seq_len
self.max_mem_len = max_mem_len
if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
self.pos_emb = always(0)
elif scaled_sinu_pos_emb:
self.pos_emb = ScaledSinusoidalEmbedding(dim)
else:
self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len)
self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
self.emb_dropout = nn.Dropout(emb_dropout)
self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity()
self.attn_layers = attn_layers
self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity()
def forward(
self,
x,
return_embeddings = False,
return_intermediates = False,
return_mems = False,
mask = None,
return_attn = False,
mems = None,
pos = None,
prepend_embeds = None,
**kwargs
):
x = self.project_in(x)
x = x + self.pos_emb(x, pos = pos)
x = self.post_emb_norm(x)
# whether to append embeds, as in PaLI, for image embeddings
if exists(prepend_embeds):
_, prepend_dim = prepend_embeds.shape[1:]
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions'
x = torch.cat((prepend_embeds, x), dim = -2)
x = self.emb_dropout(x)
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs)
out = self.project_out(x) if not return_embeddings else x
if return_intermediates:
return out, intermediates
if return_mems:
hiddens = intermediates.hiddens
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens))
return out, new_mems
if return_attn:
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
return out, attn_maps
return out
class XTransformer(nn.Module):
def __init__(
self,
*,
dim,
tie_token_emb = False,
ignore_index = -100,
pad_value = 0,
cross_attn_tokens_dropout = 0.,
**kwargs
):
super().__init__()
enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs)
dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs)
assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword'
enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs)
enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0)
enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None)
enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False)
enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True)
dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs)
dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0)
dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False)
dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True)
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # how many tokens from the encoder to dropout when cross attending from decoder - seen in a couple papers, including Perceiver AR - this will also be very effective regularization when cross attending to very long memories
self.encoder = TransformerWrapper(
**enc_transformer_kwargs,
attn_layers = Encoder(dim = dim, **enc_kwargs)
)
self.decoder = TransformerWrapper(
**dec_transformer_kwargs,
attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs)
)
if tie_token_emb:
self.decoder.token_emb = self.encoder.token_emb
self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value)
@torch.no_grad()
def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs):
encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True)
return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs)
def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None):
if exists(src_prepend_embeds) and exists(mask):
mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True)
enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True)
if self.training and self.cross_attn_tokens_dropout > 0:
enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout)
out = self.decoder(tgt, context = enc, context_mask = mask)
return out |