|
|
|
|
|
|
|
|
|
import os |
|
import time as reqtime |
|
import datetime |
|
from pytz import timezone |
|
|
|
import gradio as gr |
|
|
|
import numpy as np |
|
|
|
import os |
|
import random |
|
from collections import Counter |
|
import math |
|
from tqdm import tqdm |
|
|
|
import TMIDIX |
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
|
|
|
|
|
|
def Generate_Chords_Progression(minimum_song_length_in_chords_chunks, |
|
chords_chunks_memory_ratio, |
|
chord_time_step, |
|
merge_chords_notes, |
|
melody_MIDI_patch_number, |
|
chords_progression_MIDI_patch_number, |
|
base_MIDI_patch_number |
|
): |
|
|
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = reqtime.time() |
|
|
|
print('=' * 70) |
|
print('Requested settings:') |
|
print('Minimum song length in chords chunks:', minimum_song_length_in_chords_chunks) |
|
print('Chords chunks memory ratio:', chords_chunks_memory_ratio) |
|
print('Chord time step:', chord_time_step) |
|
print('Merge chords notes max time:', merge_chords_notes) |
|
print('Melody MIDI patch number:', melody_MIDI_patch_number) |
|
print('Chords progression MIDI patch number:', chords_progression_MIDI_patch_number) |
|
print('Base MIDI patch number:', base_MIDI_patch_number) |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Pitches Chords Progressions Generator') |
|
print('=' * 70) |
|
|
|
print('=' * 70) |
|
print('Chunk-by-chunk generation') |
|
print('=' * 70) |
|
print('Generating...') |
|
print('=' * 70) |
|
|
|
matching_long_chords_chunks = [] |
|
|
|
ridx = random.randint(0, len(all_long_chords_tokens_chunks)-1) |
|
|
|
matching_long_chords_chunks.append(ridx) |
|
|
|
max_song_len = 0 |
|
|
|
tries = 0 |
|
|
|
while len(matching_long_chords_chunks) < minimum_song_length_in_chords_chunks: |
|
|
|
matching_long_chords_chunks = [] |
|
|
|
ridx = random.randint(0, len(all_long_chords_tokens_chunks)-1) |
|
|
|
matching_long_chords_chunks.append(ridx) |
|
seen = [ridx] |
|
gseen = [ridx] |
|
|
|
for a in range(minimum_song_length_in_chords_chunks * 10): |
|
|
|
if not matching_long_chords_chunks: |
|
break |
|
|
|
if len(matching_long_chords_chunks) > minimum_song_length_in_chords_chunks: |
|
break |
|
|
|
schunk = all_long_chords_tokens_chunks[matching_long_chords_chunks[-1]] |
|
trg_long_chunk = np.array(schunk[-chunk_size:]) |
|
idxs = np.where((src_long_chunks == trg_long_chunk).all(axis=1))[0].tolist() |
|
|
|
if len(idxs) > 1: |
|
|
|
random.shuffle(idxs) |
|
|
|
eidxs = [i for i in idxs if i not in seen] |
|
|
|
if eidxs: |
|
eidx = eidxs[0] |
|
matching_long_chords_chunks.append(eidx) |
|
seen.append(eidx) |
|
gseen.append(eidx) |
|
|
|
if 0 < chords_chunks_memory_ratio < 1: |
|
seen = random.choices(gseen, k=math.ceil(len(gseen) * chords_chunks_memory_ratio)) |
|
elif chords_chunks_memory_ratio == 0: |
|
seen = [] |
|
|
|
else: |
|
gseen.pop() |
|
matching_long_chords_chunks.pop() |
|
|
|
else: |
|
gseen.pop() |
|
matching_long_chords_chunks.pop() |
|
|
|
|
|
if len(matching_long_chords_chunks) > max_song_len: |
|
print('Current song length:', len(matching_long_chords_chunks), 'chords chunks') |
|
print('=' * 70) |
|
final_song = matching_long_chords_chunks |
|
|
|
max_song_len = max(max_song_len, len(matching_long_chords_chunks)) |
|
|
|
tries += 1 |
|
|
|
if tries % 500 == 0: |
|
print('Number of passed tries:', tries) |
|
print('=' * 70) |
|
|
|
if len(matching_long_chords_chunks) > max_song_len: |
|
print('Current song length:', len(matching_long_chords_chunks), 'chords chunks') |
|
print('=' * 70) |
|
final_song = matching_long_chords_chunks |
|
|
|
f_song = [] |
|
|
|
for mat in final_song: |
|
f_song.extend(all_long_good_chords_chunks[mat][:-chunk_size]) |
|
f_song.extend(all_long_good_chords_chunks[mat][-chunk_size:]) |
|
|
|
print('Generated final song after', tries, 'tries with', len(final_song), 'chords chunks and', len(f_song), 'chords') |
|
print('=' * 70) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('Rendering results...') |
|
print('=' * 70) |
|
|
|
output_score = [] |
|
|
|
time = 0 |
|
|
|
patches = [0] * 16 |
|
patches[0] = chords_progression_MIDI_patch_number |
|
|
|
if base_MIDI_patch_number > -1: |
|
patches[2] = base_MIDI_patch_number |
|
|
|
if melody_MIDI_patch_number > -1: |
|
patches[3] = melody_MIDI_patch_number |
|
|
|
chords_labels = [] |
|
|
|
for i, s in enumerate(f_song): |
|
|
|
time += chord_time_step |
|
|
|
dur = chord_time_step |
|
|
|
chord_str = str(i+1) |
|
|
|
for t in sorted(set([t % 12 for t in s])): |
|
chord_str += '-' + str(t) |
|
|
|
chords_labels.append(['text_event', time, chord_str]) |
|
|
|
for p in s: |
|
output_score.append(['note', time, dur, 0, p, max(40, p), chords_progression_MIDI_patch_number]) |
|
|
|
if base_MIDI_patch_number > -1: |
|
output_score.append(['note', time, dur, 2, (s[-1] % 12)+24, 120-(s[-1] % 12), base_MIDI_patch_number]) |
|
|
|
if melody_MIDI_patch_number > -1: |
|
output_score = TMIDIX.add_melody_to_enhanced_score_notes(output_score, |
|
melody_patch=melody_MIDI_patch_number, |
|
melody_notes_max_duration=max(merge_chords_notes, chord_time_step) |
|
) |
|
|
|
if merge_chords_notes > 0: |
|
escore_matrix = TMIDIX.escore_notes_to_escore_matrix(output_score) |
|
output_score = TMIDIX.escore_matrix_to_merged_escore_notes(escore_matrix, max_note_duration=merge_chords_notes) |
|
|
|
midi_score = sorted(chords_labels + output_score, key=lambda x: x[1]) |
|
|
|
fn1 = "Pitches-Chords-Progression-Composition" |
|
|
|
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(midi_score, |
|
output_signature = 'Pitches Chords Progression', |
|
output_file_name = fn1, |
|
track_name='Project Los Angeles', |
|
list_of_MIDI_patches=patches |
|
) |
|
|
|
new_fn = fn1+'.mid' |
|
|
|
|
|
audio = midi_to_colab_audio(new_fn, |
|
soundfont_path=soundfont, |
|
sample_rate=16000, |
|
volume_scale=10, |
|
output_for_gradio=True |
|
) |
|
|
|
|
|
|
|
output_midi_title = str(fn1) |
|
output_midi = str(new_fn) |
|
output_audio = (16000, audio) |
|
|
|
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('Generated chords progression info and stats:') |
|
print('=' * 70) |
|
|
|
chords_progression_summary_string = '=' * 70 |
|
chords_progression_summary_string += '\n' |
|
|
|
all_song_chords = [] |
|
|
|
for pc in f_song: |
|
tones_chord = tuple(sorted(set([p % 12 for p in pc]))) |
|
all_song_chords.append([pc, tones_chord]) |
|
|
|
print('=' * 70) |
|
print('Total number of chords:', len(all_song_chords)) |
|
chords_progression_summary_string += 'Total number of chords: ' + str(len(all_song_chords)) + '\n' |
|
chords_progression_summary_string += '=' * 70 |
|
chords_progression_summary_string += '\n' |
|
print('=' * 70) |
|
print('Most common pitches chord:', list(Counter(tuple([a[0] for a in all_song_chords])).most_common(1)[0][0]), '===', Counter(tuple([a[0] for a in all_song_chords])).most_common(1)[0][1], 'count') |
|
chords_progression_summary_string += 'Most common pitches chord: ' + str(list(Counter(tuple([a[0] for a in all_song_chords])).most_common(1)[0][0])) + ' === ' + str(Counter(tuple([a[0] for a in all_song_chords])).most_common(1)[0][1]) + ' count' + '\n' |
|
chords_progression_summary_string += '=' * 70 |
|
chords_progression_summary_string += '\n' |
|
print('=' * 70) |
|
print('Most common tones chord:', list(Counter(tuple([a[1] for a in all_song_chords])).most_common(1)[0][0]), '===', Counter(tuple([a[1] for a in all_song_chords])).most_common(1)[0][1], 'count') |
|
chords_progression_summary_string += 'Most common tones chord: ' + str(list(Counter(tuple([a[1] for a in all_song_chords])).most_common(1)[0][0])) + ' === ' + str(Counter(tuple([a[1] for a in all_song_chords])).most_common(1)[0][1]) + ' count' + '\n' |
|
chords_progression_summary_string += '=' * 70 |
|
chords_progression_summary_string += '\n' |
|
print('=' * 70) |
|
print('Sorted unique songs chords set:', len(sorted(set(tuple([a[1] for a in all_song_chords])))), 'count') |
|
chords_progression_summary_string += 'Sorted unique songs chords set: ' + str(len(sorted(set(tuple([a[1] for a in all_song_chords]))))) + ' count' + '\n' |
|
chords_progression_summary_string += '=' * 70 |
|
chords_progression_summary_string += '\n' |
|
|
|
for c in sorted(set(tuple([a[1] for a in all_song_chords]))): |
|
|
|
chords_progression_summary_string += str(list(c)) + '\n' |
|
chords_progression_summary_string += '=' * 70 |
|
chords_progression_summary_string += '\n' |
|
print('=' * 70) |
|
print('Grouped songs chords set:', len(TMIDIX.grouped_set(tuple([a[1] for a in all_song_chords]))), 'count') |
|
chords_progression_summary_string += 'Grouped songs chords set: ' + str(len(TMIDIX.grouped_set(tuple([a[1] for a in all_song_chords])))) + ' count' + '\n' |
|
chords_progression_summary_string += '=' * 70 |
|
chords_progression_summary_string += '\n' |
|
print('=' * 70) |
|
for c in TMIDIX.grouped_set(tuple([a[1] for a in all_song_chords])): |
|
|
|
chords_progression_summary_string += str(list(c)) + '\n' |
|
chords_progression_summary_string += '=' * 70 |
|
chords_progression_summary_string += '\n' |
|
|
|
|
|
chords_progression_summary_string += 'All songs chords' + '\n' |
|
chords_progression_summary_string += '=' * 70 |
|
chords_progression_summary_string += '\n' |
|
|
|
for i, pc_tc in enumerate(all_song_chords): |
|
|
|
chords_progression_summary_string += 'Song chord # ' + str(i) + '\n' |
|
|
|
chords_progression_summary_string += str(list(pc_tc[0])) + ' === ' + str(list(pc_tc[1])) + '\n' |
|
|
|
chords_progression_summary_string += '=' * 70 |
|
chords_progression_summary_string += '\n' |
|
|
|
|
|
print('-' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('-' * 70) |
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
|
|
return output_audio, output_plot, output_midi, chords_progression_summary_string |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
|
|
|
|
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" |
|
|
|
print('Loading processed Pitches Chords Progressions dataset data...') |
|
print('=' * 70) |
|
long_tones_chords_dict, all_long_chords_tokens_chunks, all_long_good_chords_chunks = TMIDIX.Tegridy_Any_Pickle_File_Reader('processed_chords_progressions_chunks_data') |
|
|
|
print('=' * 70) |
|
print('Resulting chords dictionary size:', len(long_tones_chords_dict)) |
|
print('=' * 70) |
|
print('Loading chords chunks...') |
|
|
|
chunk_size = 4 |
|
|
|
src_long_chunks = np.array([a[:chunk_size] for a in all_long_chords_tokens_chunks]) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
print('Total chords chunks count:', len(all_long_good_chords_chunks)) |
|
print('=' * 70) |
|
|
|
|
|
|
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Chords Progressions Generator</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique chords progressions</h1>") |
|
gr.Markdown( |
|
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Chords-Progressions-Generator&style=flat)\n\n" |
|
"This is a demo for Tegridy MIDI Dataset\n\n" |
|
"Check out [Tegridy MIDI Dataset](https://github.com/asigalov61/Tegridy-MIDI-Dataset) on GitHub!\n\n" |
|
"[Open In Colab]" |
|
"(https://colab.research.google.com/github/asigalov61/Tegridy-MIDI-Dataset/blob/master/Chords-Progressions/Pitches_Chords_Progressions_Generator.ipynb)" |
|
" for all options, faster execution and endless generation" |
|
) |
|
|
|
gr.Markdown("## Select generation options") |
|
|
|
minimum_song_length_in_chords_chunks = gr.Slider(4, 60, value=30, step=1, label="Minimum song length in chords chunks") |
|
chords_chunks_memory_ratio = gr.Slider(0, 1, value=1, step=0.1, label="Chords chunks memory ratio") |
|
chord_time_step = gr.Slider(100, 1000, value=500, step=50, label="Chord time step") |
|
merge_chords_notes = gr.Slider(0, 4000, value=1000, step=100, label="Merged chords notes max time") |
|
melody_MIDI_patch_number = gr.Slider(0, 127, value=40, step=1, label="Melody MIDI patch number") |
|
chords_progression_MIDI_patch_number = gr.Slider(0, 127, value=0, step=1, label="Chords progression MIDI patch number") |
|
base_MIDI_patch_number = gr.Slider(0, 127, value=35, step=1, label="Base MIDI patch number") |
|
|
|
run_btn = gr.Button("generate", variant="primary") |
|
|
|
gr.Markdown("## Generation results") |
|
|
|
output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio") |
|
output_plot = gr.Plot(label="Output MIDI score plot") |
|
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) |
|
|
|
output_cp_summary = gr.Textbox(label="Generated chords progression info and stats") |
|
|
|
run_event = run_btn.click(Generate_Chords_Progression, |
|
[minimum_song_length_in_chords_chunks, |
|
chords_chunks_memory_ratio, |
|
chord_time_step, |
|
merge_chords_notes, |
|
melody_MIDI_patch_number, |
|
chords_progression_MIDI_patch_number, |
|
base_MIDI_patch_number], |
|
[output_audio, output_plot, output_midi, output_cp_summary] |
|
) |
|
|
|
app.queue().launch() |