|
|
|
|
|
import os |
|
import time as reqtime |
|
import datetime |
|
from pytz import timezone |
|
|
|
import torch |
|
|
|
import spaces |
|
import gradio as gr |
|
|
|
from x_transformer_1_23_2 import * |
|
import random |
|
from statistics import mode |
|
import tqdm |
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
import TMIDIX |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
in_space = os.getenv("SYSTEM") == "spaces" |
|
|
|
|
|
|
|
@spaces.GPU |
|
def ClassifyMIDI(input_midi, input_sampling_resolution): |
|
|
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = reqtime.time() |
|
|
|
print('=' * 70) |
|
|
|
fn = os.path.basename(input_midi.name) |
|
fn1 = fn.split('.')[0] |
|
|
|
print('=' * 70) |
|
print('Ultimate MIDI Classifier') |
|
print('=' * 70) |
|
|
|
print('Input MIDI file name:', fn) |
|
|
|
print('=' * 70) |
|
print('Loading MIDI file...') |
|
|
|
midi_name = fn |
|
|
|
raw_score = TMIDIX.midi2single_track_ms_score(open(input_midi.name, 'rb').read()) |
|
|
|
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] |
|
|
|
|
|
|
|
|
|
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32) |
|
|
|
escore_notes = [e for e in escore_notes if e[6] < 80 or e[6] == 128] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
melody_chords = [] |
|
|
|
|
|
|
|
|
|
|
|
pe = escore_notes[0] |
|
|
|
pitches = [] |
|
|
|
notes_counter = 0 |
|
|
|
for e in escore_notes: |
|
|
|
|
|
|
|
|
|
delta_time = max(0, min(127, e[1]-pe[1])) |
|
|
|
if delta_time != 0: |
|
pitches = [] |
|
|
|
|
|
|
|
dur = max(1, min(127, e[2])) |
|
|
|
|
|
pat = max(0, min(128, e[6])) |
|
|
|
|
|
|
|
if pat == 128: |
|
ptc = max(1, min(127, e[4]))+128 |
|
else: |
|
ptc = max(1, min(127, e[4])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if ptc not in pitches: |
|
melody_chords.extend([delta_time, dur+128, ptc+256]) |
|
pitches.append(ptc) |
|
notes_counter += 1 |
|
|
|
pe = e |
|
|
|
|
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
print('Sampling score...') |
|
|
|
chunk_size = 1020 |
|
|
|
score = melody_chords |
|
|
|
input_data = [] |
|
|
|
for i in range(0, len(score)-chunk_size, chunk_size // input_sampling_resolution): |
|
schunk = score[i:i+chunk_size] |
|
|
|
if len(schunk) == chunk_size: |
|
|
|
td = [937] |
|
|
|
td.extend(schunk) |
|
|
|
td.extend([938]) |
|
|
|
input_data.append(td) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
classification_summary_string = '=' * 70 |
|
classification_summary_string += '\n' |
|
|
|
samples_overlap = 340 - chunk_size // input_sampling_resolution // 3 |
|
|
|
print('Composition has', notes_counter, 'notes') |
|
print('=' * 70) |
|
print('Composition was split into' , len(input_data), 'samples', 'of 340 notes each with', samples_overlap, 'notes overlap') |
|
print('=' * 70) |
|
print('Number of notes in all composition samples:', len(input_data) * 340) |
|
print('=' * 70) |
|
|
|
classification_summary_string += 'Composition has ' + str(notes_counter) + ' notes\n' |
|
classification_summary_string += '=' * 70 |
|
classification_summary_string += '\n' |
|
classification_summary_string += 'Composition was split into ' + 'samples of 340 notes each with ' + str(samples_overlap) + ' notes overlap\n' |
|
classification_summary_string += 'Number of notes in all composition samples: ' + str(len(input_data) * 340) + '\n' |
|
classification_summary_string += '=' * 70 |
|
classification_summary_string += '\n' |
|
|
|
print('Loading model...') |
|
|
|
SEQ_LEN = 1026 |
|
PAD_IDX = 940 |
|
DEVICE = 'cuda' |
|
|
|
|
|
|
|
model = TransformerWrapper( |
|
num_tokens = PAD_IDX+1, |
|
max_seq_len = SEQ_LEN, |
|
attn_layers = Decoder(dim = 1024, depth = 24, heads = 32, attn_flash = True) |
|
) |
|
|
|
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) |
|
|
|
model = torch.nn.DataParallel(model) |
|
|
|
model.to(DEVICE) |
|
|
|
print('=' * 70) |
|
|
|
print('Loading model checkpoint...') |
|
|
|
model.load_state_dict( |
|
torch.load('Ultimate_MIDI_Classifier_Trained_Model_29886_steps_0.556_loss_0.8339_acc.pth', |
|
map_location=DEVICE)) |
|
print('=' * 70) |
|
|
|
if DEVICE == 'cpu': |
|
dtype = torch.bfloat16 |
|
else: |
|
dtype = torch.bfloat16 |
|
|
|
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Ultimate MIDI Classifier') |
|
print('=' * 70) |
|
print('Classifying...') |
|
|
|
torch.cuda.empty_cache() |
|
|
|
model.eval() |
|
|
|
artist_results = [] |
|
song_results = [] |
|
|
|
results = [] |
|
|
|
for input in input_data: |
|
|
|
x = torch.tensor(input[:1022], dtype=torch.long, device='cuda') |
|
|
|
with ctx: |
|
out = model.module.generate(x, |
|
2, |
|
filter_logits_fn=top_k, |
|
filter_kwargs={'k': 1}, |
|
temperature=0.9, |
|
return_prime=False, |
|
verbose=False) |
|
|
|
result = tuple(out[0].tolist()) |
|
|
|
results.append(result) |
|
|
|
final_result = mode(results) |
|
|
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
result_toks = [final_result[0]-512, final_result[1]-512] |
|
mc_song_artist = song_artist_tokens_to_song_artist(result_toks) |
|
gidx = genre_labels_fnames.index(mc_song_artist) |
|
mc_genre = genre_labels[gidx][1] |
|
|
|
print('Most common classification genre label:', mc_genre) |
|
print('Most common classification song-artist label:', mc_song_artist) |
|
print('Most common song-artist classification label ratio:' , results.count(final_result) / len(results)) |
|
print('=' * 70) |
|
|
|
classification_summary_string += 'Most common classification genre label: ' + str(mc_genre) + '\n' |
|
classification_summary_string += 'Most common classification song-artist label: ' + str(mc_song_artist) + '\n' |
|
classification_summary_string += 'Most common song-artist classification label ratio: '+ str(results.count(final_result) / len(results)) + '\n' |
|
classification_summary_string += '=' * 70 |
|
classification_summary_string += '\n' |
|
|
|
print('All classification labels summary:') |
|
print('=' * 70) |
|
|
|
all_artists_labels = [] |
|
|
|
for i, res in enumerate(results): |
|
result_toks = [res[0]-512, res[1]-512] |
|
song_artist = song_artist_tokens_to_song_artist(result_toks) |
|
gidx = genre_labels_fnames.index(song_artist) |
|
genre = genre_labels[gidx][1] |
|
|
|
print('Notes', i*samples_overlap, '-', (i*samples_overlap)+340, '===', genre, '---', song_artist) |
|
classification_summary_string += 'Notes ' + str(i*samples_overlap) + ' - ' + str((i*samples_overlap)+340) + ' === ' + str(genre) + ' --- ' + str(song_artist) + '\n' |
|
|
|
artist_label = str_strip_artist(song_artist.split(' --- ')[1]) |
|
|
|
all_artists_labels.append(artist_label) |
|
|
|
classification_summary_string += '=' * 70 |
|
classification_summary_string += '\n' |
|
print('=' * 70) |
|
|
|
mode_artist_label = mode(all_artists_labels) |
|
mode_artist_label_count = all_artists_labels.count(mode_artist_label) |
|
|
|
print('Aggregated artist classification label:', mode_artist_label) |
|
print('Aggregated artist classification label ratio:', mode_artist_label_count / len(all_artists_labels)) |
|
classification_summary_string += 'Aggregated artist classification label: ' + str(mode_artist_label) + '\n' |
|
classification_summary_string += 'Aggregated artist classification label ratio: ' + str(mode_artist_label_count / len(all_artists_labels)) + '\n' |
|
classification_summary_string += '=' * 70 |
|
classification_summary_string += '\n' |
|
|
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('-' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('-' * 70) |
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
|
|
return classification_summary_string |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" |
|
|
|
|
|
|
|
|
|
|
|
def str_strip_song(string): |
|
if string is not None: |
|
string = string.replace('-', ' ').replace('_', ' ').replace('=', ' ') |
|
str1 = re.compile('[^a-zA-Z ]').sub('', string) |
|
return re.sub(' +', ' ', str1).strip().title() |
|
else: |
|
return '' |
|
|
|
def str_strip_artist(string): |
|
if string is not None: |
|
string = string.replace('-', ' ').replace('_', ' ').replace('=', ' ') |
|
str1 = re.compile('[^0-9a-zA-Z ]').sub('', string) |
|
return re.sub(' +', ' ', str1).strip().title() |
|
else: |
|
return '' |
|
|
|
def song_artist_to_song_artist_tokens(file_name): |
|
idx = classifier_labels.index(file_name) |
|
|
|
tok1 = idx // 424 |
|
tok2 = idx % 424 |
|
|
|
return [tok1, tok2] |
|
|
|
def song_artist_tokens_to_song_artist(file_name_tokens): |
|
|
|
tok1 = file_name_tokens[0] |
|
tok2 = file_name_tokens[1] |
|
|
|
idx = (tok1 * 424) + tok2 |
|
|
|
return classifier_labels[idx] |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Loading Ultimate MIDI Classifier labels...') |
|
print('=' * 70) |
|
classifier_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Ultimate_MIDI_Classifier_Song_Artist_Labels') |
|
print('=' * 70) |
|
genre_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Ultimate_MIDI_Classifier_Music_Genre_Labels') |
|
genre_labels_fnames = [f[0] for f in genre_labels] |
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate MIDI Classifier</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Classify absolutely any MIDI by genre, song and artist</h1>") |
|
gr.Markdown( |
|
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-MIDI-Classifier&style=flat)\n\n" |
|
"This is a demo for Ultimate MIDI Classifier\n\n" |
|
"Check out [Ultimate MIDI Classifier](https://github.com/asigalov61/Ultimate-MIDI-Classifier) on GitHub!\n\n" |
|
) |
|
|
|
gr.Markdown("## Upload any MIDI to classify") |
|
|
|
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) |
|
input_sampling_resolution = gr.Slider(1, 5, value=2, step=1, label="Classification sampling resolution") |
|
|
|
run_btn = gr.Button("classify", variant="primary") |
|
|
|
gr.Markdown("## Classification results") |
|
|
|
output_midi_cls_summary = gr.Textbox(label="MIDI classification results") |
|
|
|
run_event = run_btn.click(ClassifyMIDI, [input_midi, input_sampling_resolution], |
|
[output_midi_cls_summary]) |
|
gr.Examples( |
|
[["Honesty.kar", 2], |
|
["House Of The Rising Sun.mid", 2], |
|
["Nothing Else Matters.kar", 2], |
|
["Sharing The Night Together.kar", 2] |
|
], |
|
[input_midi, input_sampling_resolution], |
|
[output_midi_cls_summary], |
|
ClassifyMIDI, |
|
cache_examples=True, |
|
) |
|
|
|
app.queue().launch() |