# https://huggingface.co/spaces/asigalov61/Advanced-MIDI-Classifier import os import time as reqtime import datetime from pytz import timezone import torch import spaces import gradio as gr from x_transformer_1_23_2 import * import random from statistics import mode import tqdm from midi_to_colab_audio import midi_to_colab_audio import TMIDIX import matplotlib.pyplot as plt in_space = os.getenv("SYSTEM") == "spaces" # ================================================================================================= @spaces.GPU def ClassifyMIDI(input_midi): print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) fn = os.path.basename(input_midi.name) fn1 = fn.split('.')[0] print('=' * 70) print('Ultimate MIDI Classifier') print('=' * 70) print('Input MIDI file name:', fn) print('=' * 70) print('Loading MIDI file...') midi_name = fn raw_score = TMIDIX.midi2single_track_ms_score(open(input_midi.name, 'rb').read()) escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] #=============================================================================== # Augmented enhanced score notes escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32) escore_notes = [e for e in escore_notes if e[6] < 80 or e[6] == 128] #======================================================= # Augmentation #======================================================= # FINAL PROCESSING melody_chords = [] #======================================================= # MAIN PROCESSING CYCLE #======================================================= pe = escore_notes[0] pitches = [] notes_counter = 0 for e in escore_notes: #======================================================= # Timings... delta_time = max(0, min(127, e[1]-pe[1])) if delta_time != 0: pitches = [] # Durations and channels dur = max(1, min(127, e[2])) # Patches pat = max(0, min(128, e[6])) # Pitches if pat == 128: ptc = max(1, min(127, e[4]))+128 else: ptc = max(1, min(127, e[4])) #======================================================= # FINAL NOTE SEQ # Writing final note synchronously if ptc not in pitches: melody_chords.extend([delta_time, dur+128, ptc+256]) pitches.append(ptc) notes_counter += 1 pe = e #============================================================== print('Done!') print('=' * 70) print('Sampling score...') chunk_size = 1020 score = melody_chords input_data = [] for i in range(0, len(score)-chunk_size, chunk_size // classification_sampling_resolution): schunk = score[i:i+chunk_size] if len(schunk) == chunk_size: td = [937] td.extend(schunk) td.extend([938]) input_data.append(td) print('Done!') print('=' * 70) #============================================================== classification_summary_string = '=' * 70 classification_summary_string += '\n' print('Composition has', notes_counter, 'notes') print('=' * 70) print('Composition was split into' , len(input_data), 'samples', 'of 340 notes each with', 340 - chunk_size // classification_sampling_resolution // 3, 'notes overlap') print('=' * 70) print('Number of notes in all composition samples:', len(input_data) * 340) print('=' * 70) classification_summary_string += 'Composition has ' + str(notes_counter) + ' notes\n' classification_summary_string += '=' * 70 classification_summary_string += '\n' classification_summary_string += 'Composition was split into ' + 'samples', 'of 340 notes each with', 340 - chunk_size // classification_sampling_resolution // 3, 'notes overlap\n' classification_summary_string += 'Number of notes in all composition chunks: ' + str(len(input_data) * 340) + '\n' classification_summary_string += '=' * 70 classification_summary_string += '\n' print('Loading model...') SEQ_LEN = 1026 PAD_IDX = 940 DEVICE = 'cuda' # 'cuda' # instantiate the model model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 1024, depth = 24, heads = 32, attn_flash = True) ) model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) model = torch.nn.DataParallel(model) model.to(DEVICE) print('=' * 70) print('Loading model checkpoint...') model.load_state_dict( torch.load('Ultimate_MIDI_Classifier_Trained_Model_29886_steps_0.556_loss_0.8339_acc.pth', map_location=DEVICE)) print('=' * 70) if DEVICE == 'cpu': dtype = torch.bfloat16 else: dtype = torch.bfloat16 ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) print('Done!') print('=' * 70) #================================================================== print('=' * 70) print('Ultimate MIDI Classifier') print('=' * 70) print('Classifying...') torch.cuda.empty_cache() model.eval() artist_results = [] song_results = [] results = [] for input in input_data: x = torch.tensor(input[:1022], dtype=torch.long, device='cuda') with ctx: out = model.module.generate(x, 2, filter_logits_fn=top_k, filter_kwargs={'k': 1}, temperature=0.9, return_prime=False, verbose=False) result = tuple(out[0].tolist()) results.append(result) all_results_labels = [classifier_labels[0][r-384] for r in results] final_result = mode(results) print('Done!') print('=' * 70) print('Most common classification label:', classifier_labels[0][final_result-384]) print('Most common classification label ratio:' , results.count(final_result) / len(results)) print('Most common classification label index', final_result) print('=' * 70) classification_summary_string += 'Most common classification label: ' + str(classifier_labels[0][final_result-384]) + '\n' classification_summary_string += 'Most common classification label ratio: ' + str(results.count(final_result) / len(results)) + '\n' classification_summary_string += 'Most common classification label index '+ str(final_result) + '\n' classification_summary_string += '=' * 70 classification_summary_string += '\n' print('All classification labels summary:') print('=' * 70) for i, a in enumerate(all_results_labels): print('Notes', i*85, '-', (i*85)+340, '===', a) classification_summary_string += 'Notes ' + str(i*85) + ' - ' + str((i*85)+340) + ' === ' + str(a) + '\n' classification_summary_string += '=' * 70 classification_summary_string += '\n' print('=' * 70) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') score_idx = processed_scores_labels.index(classifier_labels[0][final_result-384]) output_score = processed_scores[score_idx][1][:6000] print('=' * 70) print('Sample INTs', results[:15]) print('=' * 70) fn1 = processed_scores[score_idx][0] output_score = TMIDIX.recalculate_score_timings(output_score) output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score) detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, output_signature = 'Advanced MIDI Classifier', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches, timings_multiplier=16 ) new_fn = fn1+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=soundfont, sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('Done!') print('=' * 70) #======================================================== output_midi_title = str(fn1) output_midi_summary = classification_summary_string output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True, timings_multiplier=16) print('Output MIDI file name:', output_midi) print('Output MIDI title:', output_midi_title) print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot # ================================================================================================= if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" #=============================================================================== # Helper functions #=============================================================================== def str_strip_song(string): if string is not None: string = string.replace('-', ' ').replace('_', ' ').replace('=', ' ') str1 = re.compile('[^a-zA-Z ]').sub('', string) return re.sub(' +', ' ', str1).strip().title() else: return '' def str_strip_artist(string): if string is not None: string = string.replace('-', ' ').replace('_', ' ').replace('=', ' ') str1 = re.compile('[^0-9a-zA-Z ]').sub('', string) return re.sub(' +', ' ', str1).strip().title() else: return '' def song_artist_to_song_artist_tokens(file_name): idx = classifier_labels.index(file_name) tok1 = idx // 424 tok2 = idx % 424 return [tok1, tok2] def song_artist_tokens_to_song_artist(file_name_tokens): tok1 = file_name_tokens[0] tok2 = file_name_tokens[1] idx = (tok1 * 424) + tok2 return classifier_labels[idx] #=============================================================================== print('=' * 70) print('Loading Ultimate MIDI Classifier labels...') print('=' * 70) classifier_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Ultimate-MIDI-Classifier/Data/Ultimate_MIDI_Classifier_Song_Artist_Labels') print('=' * 70) genre_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Ultimate-MIDI-Classifier/Data/Ultimate_MIDI_Classifier_Music_Genre_Labels') genre_labels_fnames = [f[0] for f in genre_labels] print('=' * 70) print('Done!') print('=' * 70) app = gr.Blocks() with app: gr.Markdown("

Advanced MIDI Classifier

") gr.Markdown("

Detailed MIDI classification with transformers

") gr.Markdown( "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Advanced-MIDI-Classifier&style=flat)\n\n" "This is a demo for Annotated MIDI Dataset\n\n" "Check out [Annotated MIDI Dataset](https://huggingface.co/datasets/asigalov61/Annotated-MIDI-Dataset) on Hugging Face!\n\n" ) input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) run_btn = gr.Button("classify", variant="primary") gr.Markdown("## Classification results") output_midi_title = gr.Textbox(label="Best classification match MIDI title") output_midi_summary = gr.Textbox(label="MIDI classification summary") output_audio = gr.Audio(label="Best classification match MIDI audio", format="wav", elem_id="midi_audio") output_plot = gr.Plot(label="Best classification match MIDI score plot") output_midi = gr.File(label="Best classification match MIDI file", file_types=[".mid"]) run_event = run_btn.click(ClassifyMIDI, [input_midi], [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) app.queue().launch()