import streamlit as st from llama_index import VectorStoreIndex, ServiceContext, Document from llama_index.llms import OpenAI import openai from llama_index import SimpleDirectoryReader import os st.set_page_config(page_title="HUD Audit Guide", page_icon="🍂", layout="centered", initial_sidebar_state="auto", menu_items=None) test_key_print = os.environ['OPENAI_KEY'] openai.api_key = test_key_print st.title("Ask the HUD Audit Guide 💬🤖") st.info("Check out more info on the complete HUD Audit Guide at the official [website](https://www.hudoig.gov/library/single-audit-guidance/hud-consolidated-audit-guide)", icon="📃") if "messages" not in st.session_state.keys(): # Initialize the chat messages history st.session_state.messages = [ {"role": "assistant", "content": "Ask me a question about the HUD Audit Guide - Chapter 6 - Ginnie Mae Issuers of Mortgage-Backed Securities Audit Guidance! Do not enter any non-public information."} ] @st.cache_resource(show_spinner=False) def load_data(): with st.spinner(text="Loading and indexing the HUD Audit Guide – hang tight! This should take 1-2 minutes."): reader = SimpleDirectoryReader(input_dir="./data", recursive=True) docs = reader.load_data() service_context = ServiceContext.from_defaults(llm=OpenAI(model="gpt-3.5-turbo", temperature=0.5, system_prompt="You are an expert on the HUD Audit Guide and your job is to answer technical questions. Assume that all questions are related to the HUD Audit Guide and Ginnie Mae Issuers. Keep your answers technical and based on facts – do not hallucinate features.")) index = VectorStoreIndex.from_documents(docs, service_context=service_context) return index index = load_data() #chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True, system_prompt="You are an expert on the Streamlit Python library and your job is to answer technical questions. Assume that all questions are related to the Streamlit Python library. Keep your answers technical and based on facts – do not hallucinate features.") chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True) if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history st.session_state.messages.append({"role": "user", "content": prompt}) for message in st.session_state.messages: # Display the prior chat messages with st.chat_message(message["role"]): st.write(message["content"]) # If last message is not from assistant, generate a new response if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): response = chat_engine.chat(prompt) st.write(response.response) message = {"role": "assistant", "content": response.response} st.session_state.messages.append(message) # Add response to message history