Spaces:
Running
Running
File size: 8,629 Bytes
93c417c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
from gradio_huggingfacehub_search import HuggingfaceHubSearch
import nbformat as nbf
from huggingface_hub import HfApi
from httpx import Client
import logging
import pandas as pd
from utils.notebook_utils import (
eda_cells,
replace_wildcards,
rag_cells,
embeggins_cells,
)
from dotenv import load_dotenv
import os
# TODOS:
# 2. Add template for RAG and embeddings
# 3. Improve templates
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
NOTEBOOKS_REPOSITORY = os.getenv("NOTEBOOKS_REPOSITORY")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
assert (
NOTEBOOKS_REPOSITORY is not None
), "You need to set NOTEBOOKS_REPOSITORY in your environment variables"
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
HEADERS = {"Accept": "application/json", "Content-Type": "application/json"}
client = Client(headers=HEADERS)
logging.basicConfig(level=logging.INFO)
def get_compatible_libraries(dataset: str):
try:
response = client.get(
f"{BASE_DATASETS_SERVER_URL}/compatible-libraries?dataset={dataset}"
)
response.raise_for_status()
return response.json()
except Exception as e:
logging.error(f"Error fetching compatible libraries: {e}")
raise
def create_notebook_file(cells, notebook_name):
nb = nbf.v4.new_notebook()
nb["cells"] = [
nbf.v4.new_code_cell(
cmd["source"]
if isinstance(cmd["source"], str)
else "\n".join(cmd["source"])
)
if cmd["cell_type"] == "code"
else nbf.v4.new_markdown_cell(cmd["source"])
for cmd in cells
]
with open(notebook_name, "w") as f:
nbf.write(nb, f)
logging.info(f"Notebook {notebook_name} created successfully")
def get_first_rows_as_df(dataset: str, config: str, split: str, limit: int):
try:
resp = client.get(
f"{BASE_DATASETS_SERVER_URL}/first-rows?dataset={dataset}&config={config}&split={split}"
)
resp.raise_for_status()
content = resp.json()
rows = content["rows"]
rows = [row["row"] for row in rows]
first_rows_df = pd.DataFrame.from_dict(rows).sample(frac=1).head(limit)
features = content["features"]
features_dict = {feature["name"]: feature["type"] for feature in features}
return features_dict, first_rows_df
except Exception as e:
logging.error(f"Error fetching first rows: {e}")
raise
def generate_eda_cells(dataset_id):
yield from generate_cells(dataset_id, eda_cells, "eda")
def generate_rag_cells(dataset_id):
yield from generate_cells(dataset_id, rag_cells, "rag")
def generate_embedding_cells(dataset_id):
yield from generate_cells(dataset_id, embeggins_cells, "embeddings")
def _push_to_hub(
dataset_id,
notebook_file,
):
logging.info(f"Pushing notebook to hub: {dataset_id} on file {notebook_file}")
notebook_name = notebook_file.split("/")[-1]
api = HfApi(token=HF_TOKEN)
try:
logging.info(f"About to push {notebook_file} - {dataset_id}")
api.upload_file(
path_or_fileobj=notebook_file,
path_in_repo=notebook_name,
repo_id=NOTEBOOKS_REPOSITORY,
repo_type="dataset",
)
link = f"https://huggingface.co/datasets/{NOTEBOOKS_REPOSITORY}/blob/main/{notebook_name}"
logging.info(f"Notebook pushed to hub: {link}")
return link
except Exception as e:
logging.info("Failed to push notebook", e)
raise
def generate_cells(dataset_id, cells, notebook_type="eda"):
try:
libraries = get_compatible_libraries(dataset_id)
except Exception as err:
gr.Error("Unable to retrieve dataset info from HF Hub.")
logging.error(f"Failed to fetch compatible libraries: {err}")
return []
if not libraries:
gr.Error("Dataset not compatible with pandas library.")
logging.error(f"Dataset not compatible with pandas library")
return gr.File(visible=False), gr.Row.update(visible=False)
pandas_library = next(
(lib for lib in libraries.get("libraries", []) if lib["library"] == "pandas"),
None,
)
if not pandas_library:
gr.Error("Dataset not compatible with pandas library.")
return []
first_config_loading_code = pandas_library["loading_codes"][0]
first_code = first_config_loading_code["code"]
first_config = first_config_loading_code["config_name"]
first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
features, df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
wildcards = ["{dataset_name}", "{first_code}", "{html_code}"]
replacements = [dataset_id, first_code, html_code]
cells = replace_wildcards(cells, wildcards, replacements)
generated_text = ""
# Show only the first 40 lines, would like to have a scroll in gr.Code https://github.com/gradio-app/gradio/issues/9192
viewer_lines = 0
for cell in cells:
generated_text += cell["source"] + "\n"
yield generated_text, ""
if generated_text.count("\n") > 38:
generated_text += (
f"## See more lines available in the generated notebook :) ......"
)
yield generated_text, ""
break
notebook_name = f"{dataset_id.replace('/', '-')}-{notebook_type}.ipynb"
create_notebook_file(cells, notebook_name=notebook_name)
notebook_link = _push_to_hub(dataset_id, notebook_name)
yield generated_text, f"## Here you have the [generated notebook]({notebook_link})"
with gr.Blocks(fill_height=True, fill_width=True) as demo:
gr.Markdown("# 🤖 Dataset notebook creator 🕵️")
with gr.Row(equal_height=True):
with gr.Column(scale=2):
text_input = gr.Textbox(label="Suggested notebook type", visible=False)
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
value="",
)
dataset_samples = gr.Examples(
examples=[
[
"infinite-dataset-hub/WorldPopCounts",
"Try this dataset for Exploratory Data Analysis",
],
[
"infinite-dataset-hub/GlobaleCuisineRecipes",
"Try this dataset for Embeddings generation",
],
[
"infinite-dataset-hub/GlobalBestSellersSummaries",
"Try this dataset for RAG generation",
],
],
inputs=[dataset_name, text_input],
cache_examples=False,
)
@gr.render(inputs=dataset_name)
def embed(name):
if not name:
return gr.Markdown("### No dataset provided")
html_code = f"""
<iframe
src="https://huggingface.co/datasets/{name}/embed/viewer/default/train"
frameborder="0"
width="100%"
height="350px"
></iframe>
"""
return gr.HTML(value=html_code, elem_classes="viewer")
with gr.Row():
generate_eda_btn = gr.Button("Exploratory Data Analysis")
generate_embedding_btn = gr.Button("Embeddings")
generate_rag_btn = gr.Button("RAG")
generate_training_btn = gr.Button(
"Training - Coming soon", interactive=False
)
with gr.Column(scale=2):
code_component = gr.Code(
language="python", label="Notebook Code Preview", lines=40
)
go_to_notebook = gr.Markdown("", visible=True)
generate_eda_btn.click(
generate_eda_cells,
inputs=[dataset_name],
outputs=[code_component, go_to_notebook],
)
generate_embedding_btn.click(
generate_embedding_cells,
inputs=[dataset_name],
outputs=[code_component, go_to_notebook],
)
generate_rag_btn.click(
generate_rag_cells,
inputs=[dataset_name],
outputs=[code_component, go_to_notebook],
)
demo.launch()
|