Spaces:
Running
Running
Adding filter for numeric and categoric datasets
Browse files- app.py +6 -3
- utils/notebook_utils.py +12 -2
app.py
CHANGED
@@ -15,8 +15,7 @@ from dotenv import load_dotenv
|
|
15 |
import os
|
16 |
|
17 |
# TODOS:
|
18 |
-
#
|
19 |
-
# 2. Add template for RAG and embeddings
|
20 |
|
21 |
load_dotenv()
|
22 |
|
@@ -147,7 +146,11 @@ def generate_cells(dataset_id, cells, notebook_type="eda"):
|
|
147 |
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
|
148 |
wildcards = ["{dataset_name}", "{first_code}", "{html_code}"]
|
149 |
replacements = [dataset_id, first_code, html_code]
|
150 |
-
|
|
|
|
|
|
|
|
|
151 |
generated_text = ""
|
152 |
# Show only the first 40 lines, would like to have a scroll in gr.Code https://github.com/gradio-app/gradio/issues/9192
|
153 |
viewer_lines = 0
|
|
|
15 |
import os
|
16 |
|
17 |
# TODOS:
|
18 |
+
# Add template for RAG and embeddings
|
|
|
19 |
|
20 |
load_dotenv()
|
21 |
|
|
|
146 |
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
|
147 |
wildcards = ["{dataset_name}", "{first_code}", "{html_code}"]
|
148 |
replacements = [dataset_id, first_code, html_code]
|
149 |
+
has_numeric_columns = len(df.select_dtypes(include=["number"]).columns) > 0
|
150 |
+
has_categoric_columns = len(df.select_dtypes(include=["object"]).columns) > 0
|
151 |
+
cells = replace_wildcards(
|
152 |
+
cells, wildcards, replacements, has_numeric_columns, has_categoric_columns
|
153 |
+
)
|
154 |
generated_text = ""
|
155 |
# Show only the first 40 lines, would like to have a scroll in gr.Code https://github.com/gradio-app/gradio/issues/9192
|
156 |
viewer_lines = 0
|
utils/notebook_utils.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
-
def replace_wildcards(
|
|
|
|
|
2 |
if len(wildcards) != len(replacements):
|
3 |
raise ValueError(
|
4 |
"The number of wildcards must match the number of replacements."
|
@@ -6,6 +8,10 @@ def replace_wildcards(templates, wildcards, replacements):
|
|
6 |
|
7 |
new_templates = []
|
8 |
for tmp in templates:
|
|
|
|
|
|
|
|
|
9 |
tmp_text = tmp["source"]
|
10 |
for wildcard, replacement in zip(wildcards, replacements):
|
11 |
tmp_text = tmp_text.replace(wildcard, replacement)
|
@@ -75,7 +81,6 @@ import seaborn as sns
|
|
75 |
# First rows of the dataset and info
|
76 |
print(df.head())
|
77 |
print(df.info())
|
78 |
-
print(df.describe())
|
79 |
""",
|
80 |
},
|
81 |
{
|
@@ -107,6 +112,7 @@ print(df.describe())
|
|
107 |
""",
|
108 |
},
|
109 |
{
|
|
|
110 |
"cell_type": "code",
|
111 |
"source": """
|
112 |
# Unique values in categorical columns
|
@@ -118,6 +124,7 @@ df.select_dtypes(include=['object']).nunique()
|
|
118 |
"source": "## 3. Data Visualization",
|
119 |
},
|
120 |
{
|
|
|
121 |
"cell_type": "code",
|
122 |
"source": """
|
123 |
# Correlation matrix for numerical columns
|
@@ -129,6 +136,7 @@ plt.show()
|
|
129 |
""",
|
130 |
},
|
131 |
{
|
|
|
132 |
"cell_type": "code",
|
133 |
"source": """
|
134 |
# Distribution plots for numerical columns
|
@@ -142,6 +150,7 @@ for column in df.select_dtypes(include=['int64', 'float64']).columns:
|
|
142 |
""",
|
143 |
},
|
144 |
{
|
|
|
145 |
"cell_type": "code",
|
146 |
"source": """
|
147 |
# Count plots for categorical columns
|
@@ -155,6 +164,7 @@ for column in df.select_dtypes(include=['object']).columns:
|
|
155 |
""",
|
156 |
},
|
157 |
{
|
|
|
158 |
"cell_type": "code",
|
159 |
"source": """
|
160 |
# Box plots for detecting outliers in numerical columns
|
|
|
1 |
+
def replace_wildcards(
|
2 |
+
templates, wildcards, replacements, has_numeric_columns, has_categoric_columns
|
3 |
+
):
|
4 |
if len(wildcards) != len(replacements):
|
5 |
raise ValueError(
|
6 |
"The number of wildcards must match the number of replacements."
|
|
|
8 |
|
9 |
new_templates = []
|
10 |
for tmp in templates:
|
11 |
+
if "type" in tmp and tmp["type"] == "numeric" and not has_numeric_columns:
|
12 |
+
continue
|
13 |
+
if "type" in tmp and tmp["type"] == "categoric" and not has_categoric_columns:
|
14 |
+
continue
|
15 |
tmp_text = tmp["source"]
|
16 |
for wildcard, replacement in zip(wildcards, replacements):
|
17 |
tmp_text = tmp_text.replace(wildcard, replacement)
|
|
|
81 |
# First rows of the dataset and info
|
82 |
print(df.head())
|
83 |
print(df.info())
|
|
|
84 |
""",
|
85 |
},
|
86 |
{
|
|
|
112 |
""",
|
113 |
},
|
114 |
{
|
115 |
+
"type": "categoric",
|
116 |
"cell_type": "code",
|
117 |
"source": """
|
118 |
# Unique values in categorical columns
|
|
|
124 |
"source": "## 3. Data Visualization",
|
125 |
},
|
126 |
{
|
127 |
+
"type": "numeric",
|
128 |
"cell_type": "code",
|
129 |
"source": """
|
130 |
# Correlation matrix for numerical columns
|
|
|
136 |
""",
|
137 |
},
|
138 |
{
|
139 |
+
"type": "numeric",
|
140 |
"cell_type": "code",
|
141 |
"source": """
|
142 |
# Distribution plots for numerical columns
|
|
|
150 |
""",
|
151 |
},
|
152 |
{
|
153 |
+
"type": "categoric",
|
154 |
"cell_type": "code",
|
155 |
"source": """
|
156 |
# Count plots for categorical columns
|
|
|
164 |
""",
|
165 |
},
|
166 |
{
|
167 |
+
"type": "numeric",
|
168 |
"cell_type": "code",
|
169 |
"source": """
|
170 |
# Box plots for detecting outliers in numerical columns
|