Spaces:
Running
Running
Add code
Browse files- README.md +5 -5
- requirements.txt +6 -0
- utils/ __init__.py +0 -0
- utils/notebook_utils.py +184 -0
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title: Auto
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
1 |
---
|
2 |
+
title: Auto notebook creator
|
3 |
+
emoji: π
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.39.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio_huggingfacehub_search==0.0.7
|
2 |
+
huggingface_hub
|
3 |
+
nbformat
|
4 |
+
httpx
|
5 |
+
outlines
|
6 |
+
python-dotenv
|
utils/ __init__.py
ADDED
File without changes
|
utils/notebook_utils.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def replace_wildcards(templates, wildcards, replacements):
|
2 |
+
if len(wildcards) != len(replacements):
|
3 |
+
raise ValueError(
|
4 |
+
"The number of wildcards must match the number of replacements."
|
5 |
+
)
|
6 |
+
|
7 |
+
new_templates = []
|
8 |
+
for tmp in templates:
|
9 |
+
tmp_text = tmp["source"]
|
10 |
+
for wildcard, replacement in zip(wildcards, replacements):
|
11 |
+
tmp_text = tmp_text.replace(wildcard, replacement)
|
12 |
+
new_templates.append({"cell_type": tmp["cell_type"], "source": tmp_text})
|
13 |
+
|
14 |
+
return new_templates
|
15 |
+
|
16 |
+
|
17 |
+
rag_cells = [
|
18 |
+
{
|
19 |
+
"cell_type": "markdown",
|
20 |
+
"source": "# Retrieval-Augmented Generation (RAG) System Notebook",
|
21 |
+
},
|
22 |
+
{"cell_type": "code", "source": ""},
|
23 |
+
]
|
24 |
+
|
25 |
+
embeggins_cells = [
|
26 |
+
{
|
27 |
+
"cell_type": "markdown",
|
28 |
+
"source": "# Embeddings Generation Notebook",
|
29 |
+
},
|
30 |
+
{"cell_type": "code", "source": ""},
|
31 |
+
]
|
32 |
+
|
33 |
+
eda_cells = [
|
34 |
+
{
|
35 |
+
"cell_type": "markdown",
|
36 |
+
"source": "# Exploratory Data Analysis (EDA) Notebook for {dataset_name} dataset",
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"source": """
|
41 |
+
from IPython.display import HTML
|
42 |
+
display(HTML("{html_code}"))
|
43 |
+
""",
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"source": """
|
48 |
+
# 1. Install and import necessary libraries.
|
49 |
+
!pip install pandas matplotlib seaborn
|
50 |
+
""",
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"source": """
|
55 |
+
import pandas as pd
|
56 |
+
import matplotlib.pyplot as plt
|
57 |
+
import seaborn as sns
|
58 |
+
""",
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"source": """
|
63 |
+
# 2. Load the dataset as a DataFrame using the provided code
|
64 |
+
{first_code}
|
65 |
+
""",
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"source": """
|
70 |
+
# 3. Understand the dataset structure
|
71 |
+
print(df.head())
|
72 |
+
print(df.info())
|
73 |
+
print(df.describe())
|
74 |
+
""",
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"source": """
|
79 |
+
# 4. Check for missing values
|
80 |
+
print(df.isnull().sum())
|
81 |
+
""",
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"source": """
|
86 |
+
# 5. Identify data types of each column
|
87 |
+
print(df.dtypes)
|
88 |
+
""",
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"source": """
|
93 |
+
# 6. Detect duplicated rows
|
94 |
+
print(df.duplicated().sum())
|
95 |
+
""",
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"source": """
|
100 |
+
# 7. Generate descriptive statistics
|
101 |
+
print(df.describe())
|
102 |
+
""",
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "code",
|
106 |
+
"source": """
|
107 |
+
# 8. Visualize the distribution of each column.
|
108 |
+
# TODO: Add code to visualize the distribution of each column.
|
109 |
+
# 9. Explore relationships between columns.
|
110 |
+
# TODO: Add code to explore relationships between columns.
|
111 |
+
# 10. Perform correlation analysis.
|
112 |
+
# TODO: Add code to perform correlation analysis.
|
113 |
+
""",
|
114 |
+
},
|
115 |
+
]
|
116 |
+
|
117 |
+
|
118 |
+
def generate_embedding_system_prompt():
|
119 |
+
"""You are an expert data scientist tasked with creating a Jupyter notebook to generate embeddings for a specific dataset.
|
120 |
+
Use only the following libraries: 'pandas' for data manipulation, 'sentence-transformers' to load the embedding model, and 'faiss-cpu' to create the index.
|
121 |
+
|
122 |
+
The notebook should include:
|
123 |
+
|
124 |
+
1. Install necessary libraries with !pip install.
|
125 |
+
2. Import libraries.
|
126 |
+
3. Load the dataset as a DataFrame using the provided code.
|
127 |
+
4. Select the column to generate embeddings.
|
128 |
+
5. Remove duplicate data.
|
129 |
+
6. Convert the selected column to a list.
|
130 |
+
7. Load the sentence-transformers model.
|
131 |
+
8. Create a FAISS index.
|
132 |
+
9. Encode a query sample.
|
133 |
+
10. Search for similar documents using the FAISS index.
|
134 |
+
|
135 |
+
Ensure the notebook is well-organized with explanations for each step.
|
136 |
+
The output should be Markdown content with Python code snippets enclosed in "```python" and "```".
|
137 |
+
|
138 |
+
The user will provide dataset information in the following format:
|
139 |
+
|
140 |
+
## Columns and Data Types
|
141 |
+
|
142 |
+
## Sample Data
|
143 |
+
|
144 |
+
## Loading Data code
|
145 |
+
|
146 |
+
Use the provided code to load the dataset; do not use any other method.
|
147 |
+
"""
|
148 |
+
|
149 |
+
|
150 |
+
def generate_rag_system_prompt():
|
151 |
+
"""You are an expert machine learning engineer tasked with creating a Jupyter notebook to demonstrate a Retrieval-Augmented Generation (RAG) system using a specific dataset.
|
152 |
+
The dataset is provided as a pandas DataFrame.
|
153 |
+
|
154 |
+
Use only the following libraries: 'pandas' for data manipulation, 'sentence-transformers' to load the embedding model, 'faiss-cpu' to create the index, and 'transformers' for inference.
|
155 |
+
|
156 |
+
The RAG notebook should include:
|
157 |
+
|
158 |
+
1. Install necessary libraries.
|
159 |
+
2. Import libraries.
|
160 |
+
3. Load the dataset as a DataFrame using the provided code.
|
161 |
+
4. Select the column for generating embeddings.
|
162 |
+
5. Remove duplicate data.
|
163 |
+
6. Convert the selected column to a list.
|
164 |
+
7. Load the sentence-transformers model.
|
165 |
+
8. Create a FAISS index.
|
166 |
+
9. Encode a query sample.
|
167 |
+
10. Search for similar documents using the FAISS index.
|
168 |
+
11. Load the 'HuggingFaceH4/zephyr-7b-beta' model from the transformers library and create a pipeline.
|
169 |
+
12. Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query.
|
170 |
+
13. Send the prompt to the pipeline and display the answer.
|
171 |
+
|
172 |
+
Ensure the notebook is well-organized with explanations for each step.
|
173 |
+
The output should be Markdown content with Python code snippets enclosed in "```python" and "```".
|
174 |
+
|
175 |
+
The user will provide the dataset information in the following format:
|
176 |
+
|
177 |
+
## Columns and Data Types
|
178 |
+
|
179 |
+
## Sample Data
|
180 |
+
|
181 |
+
## Loading Data code
|
182 |
+
|
183 |
+
Use the provided code to load the dataset; do not use any other method.
|
184 |
+
"""
|